
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1992

An implicit numerical scheme for the simulation of
internal viscous flows on unstructured grids
Philip Charles Eberhardt Jorgenson
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Jorgenson, Philip Charles Eberhardt, "An implicit numerical scheme for the simulation of internal viscous flows on unstructured grids "
(1992). Retrospective Theses and Dissertations. 10120.
https://lib.dr.iastate.edu/rtd/10120

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F10120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F10120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Frtd%2F10120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/10120?utm_source=lib.dr.iastate.edu%2Frtd%2F10120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly fi-om the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may 

be fi'om any type of computer printer. 

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand corner and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in 

reduced form at the back of the book. 

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6" x 9" black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly 

to order. 

University Microfilms International 
A Bell & Howell Information Company 

300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 
313/761-4700 800/521-0600 



www.manaraa.com



www.manaraa.com

Order Number 9311500 

An implicit numerical scheme for the simulation of internal 
viscous flows on unstructured grids 

Jorgenson, Philip Charles Eberhardt, Ph.D. 

Iowa State University, 1992 

U M I  
300 N. ZeebRd. 
Ann Arbor, MI 48106 



www.manaraa.com



www.manaraa.com

An implicit numerical scheme for the simulation of internal viscous flows 

Philip Charles Eberhardt Jorgenson 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Mechanical Engineering 
Major: Mechanical Engineering 

on unstructured grids 

by 

Approved: 

in Charge ot Major Work 

For the Major Department 

For the Graduate College 

Iowa State University 
Ames, Iowa 

1992 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

ii 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS vii 

NOMENCLATURE viii 

1. INTRODUCTION 1 

1.1 Review of Related Work of Previous Investigators 2 

1.2 Scope of Current Research 7 

2. GOVERNING EQUATIONS 10 

3. GRID GENERATION 16 

4. NUMERICAL APPROACH 32 

4.1 Discretization Technique 32 

4.2 Preconditioning 39 

4.3 Artificial Dissipation 43 

4.4 Boundary Conditions 46 

4.5 Sparse Matrix Solvers 54 

5. RESULTS 64 

5.1 Bump on Wall 64 

5.2 Developing Channel Flow 67 

5.3 Sudden Expansion 74 



www.manaraa.com

iii 

5.4 Periodic Tandem Circular Cylinders in Cross Flow 76 

5.5 Four Port Valve 84 

6. CONCLUSIONS 88 

BIBLIOGRAPHY 93 

APPENDIX A. LOCATING LEVEL 2 CELLS 99 

APPENDIX B. CONSTRUCTING THE MATRIX EQUATION . . 104 

APPENDIX C. GRID GENERATION COMPUTER CODE . . . .  1 1 0  

APPENDIX D. VISCOUS FLOW COMPUTER CODE 147 



www.manaraa.com

iv 

LIST OF FIGURES 

Figure 3.1: The perpendicular bisection of the line connecting the points 

A and B 18 

Figure 3.2: Dirichlet polygons 19 

Figure 3.3: Delaunay triangulation 20 

Figure 3.4; Boundary definition of a square hole in a rectangular outer 

boundary 21 

Figure 3.5: Discretization of the boundaries 22 

Figure 3.6: Triangulation of boundary points 22 

Figure 3.7: Triangle with bad aspect ratio and its circumcenter 25 

Figure 3.8: Deletion of cells that violate the Delaunay criterion 25 

Figure 3.9: Local retriangulation 26 

Figure 3.10: Final coarse triangulation of domain 27 

Figure 3.11: Connectivity requirements for a single cell 27 

Figure 3.12: Triangulation of a simply connected region 30 

Figure 3.13: Triangulation of a multiply connected region 31 

Figure 4.1: Cell level dependence 36 

Figure 4.2: Cells used in the computation of viscous terms for cell .4 . . 37 

Figure 4.3: Subsonic inlet and exit boundary conditions 47 



www.manaraa.com

V 

Figure 4.4: Supersonic inlet and exit boundary conditions 48 

Figure 4.5: Solid wall viscous no-slip boundary condition 49 

Figure 4.6: Symmetric boundary condition 50 

Figure 4.7: Periodic boundary condition 50 

Figure 4.8: Solid wall inviscid tangency boundary condition 53 

Figure 4.9: Form of sparse matrix A 57 

Figure 5.1: Constant Mach number contours for flow over a symmetrical 

bump in a channel, = 0.5 65 

Figure 5.2: Upper and lower wall Mach number distribution 66 

Figure 5.3: Computational grid for the symmetrical bump in a channel 

test case, = 0.675 68 

Figure 5.4: Constant Mach number contours for flow over a symmetrical 

bump in a channel, = 0.675 69 

Figure 5.5: Upper and lower wall Mach number distribution 70 

Figure 5.6: Centerline velocity profiles for developing flow in a channel at 

= 0.05 with Rej^ = 1,20,150,1500 72 

Figure 5.7: Convergence history for developing channel flow o\'er a range 

of Mach numbers at = 20 using the block Gauss-Seidel 

solver 73 

Figure 5.8: Convergence history of developing flow in a channel, Rej^ = 20 

computed with sparse matrix solver 75 

Figure 5.9: Symmetric sudden expansion, Rej^ = 56 77 

Figure 5.10: Velocity profiles for a laminar flow in a channel with a 3:1 

symmetric sudden expansion, iîe/j = 56 78 



www.manaraa.com

vi 

Figure 5.11; Centerline velocity distribution for a laminar flow in a channel 

with a 3:1 symmetric sudden expansion, Rej^ = 56 79 

Figure 5.12: Grid about periodic tandem circular cylinders 81 

Figure 5.13: Periodic tandem circular cylinders in cross flow, Rer = 1 . . 82 

Figure 5.14: Periodic tandem circular cylinders in cross flow, Rer = 20 . . 83 

Figure 5.15: Four port valve, Rej^ = 10 86 

Figure 5.16: Four port valve, = 50 87 

Figure A.l: Level 1 and level 2 cells about cell A with subscript cell numbers 100 



www.manaraa.com

vii 

ACKNOWLEDGMENTS 

I would like to thank my major professor, Dr. Richard H. Fletcher, for his 

guidance and encouragement during my years as a graduate student. 

My appreciation is extended as well to the members of my graduate committee, 

Dr. Bruce R. Munson, Dr. Theodore H. Okiishi, Dr. .Joseph M. Prusa, and Dr. 

John C. Tannehill. A special thanks goes to Dr. Richard G. Hindman for acting as 

a substitute during my final oral examination. 

My sincere gratitude goes out to the Internal Fluid Mechanics Division at NAS.4 

Lewis Research Center for providing the time and the money to attend school and 

complete the research for my dissertation. 

My parents, Norman and Gloria, and brother, Roy. deserve a special thanks for 

their undivided attention and moral support. 



www.manaraa.com

viii 

NOMENCLATURE 

Roman Symbols 

b vector of residuals on right hand side of matrix equation 

e  internal energy per unit mass 

i  cell index 

1x heat conduction in x  direction 

% heat conduction in y  direction 

s semiperimeter of a triangle 

t  physical time 

u velocity component in the x  direction 

V velocity component in the y  direction 

w vector of primitive variables 

X Cartesian coordinate aligned with the horizontal 

X vector of unknowns in matrix equation 

y Cartesian coordinate aligned with the vertical 

A sparse matrix of coefficients 

area of cell i  

Ap preconditioning Jacobian matrix 



www.manaraa.com

ix 

temporal Jacobian matrix 

Ax spatial Jacobian matrix 

C speed of sound 

C\ Sutherland law constant 

C2 Sutherland law constant 

Cp specific heat at constant pressure 

E Cartesian flux vector in x direction 

F Cartesian flux vector in y direction 

G Cartesian flux vector written in primitive variables in x direction 

H Cartesian flux vector written in primitive variables in y direction 

L characteristic length 

M Mach number 

P pressure 

Pr Prandtl number 

Q vector of conserved quantities written in primil ive variables 

R gas constant 

Re Reynolds number 

T temperature 

U vector of conserved quantities 

Greek Symbols 

7 ratio of specific heats 



www.manaraa.com

X 

K thermal conductivity coefficient 

dynamic viscosity 

P density 

T pseudo time 

TXX shearing stress 

Txy shearing stress 

'^yy shearing stress 

Subscripts 

d cylinder diameter 

h inlet channel height 

V viscous flux 

X derivative or quantity in x direction 

y derivative or quantity in y direction 

ref reference quantity 

Superscripts 

provisional quantities 

nondimensional quantities 



www.manaraa.com

1 

1. INTRODUCTION 

The development of a general computer code that can predict the flow about 

complex geometries which include complex flow structures is desiraljle in computa­

tional fluid dynamics. Many numerical schemes proposed to date which use the finite 

difference or finite volume formulation of the flow equations were written to take 

advantage of some inherent grid structure which then permits How solutions to be 

obtained efficiently [1] - [3]. A structured mesh can be defined as a domain that is dis-

cretized such that the neighborhood of a cell or node can be relat ed to its own index 

number. This structure, which makes the solver so efficient, often makes it difficult 

to obtain reasonable grids about complex flow geometries. Many of these solution 

algorithms can be found discussed in review papers [4], [5]. Se\-eral structured grids 

can be used to break up a complex domain into more manageable subdomains. Here 

the difficulty becomes one of obtaining the necessary flow and geometric information 

where the grids intersect each other. Grid patching or grid o\erlaying techniques 

have been used with structured grids [6], [7]; however, the use of these techniques 

usually reciuires special coding in the flow solver to circumvent (problems like metric 

discontinuities and function interpolations between the various grids. An unstruc­

tured grid flow solver can alleviate many of the problems associated with structured 

grids. However, unlike the structured grid, the cell neighborhood of an unstructured 



www.manaraa.com

2 

grid must be defined explicitly. This information is usually provided to the flow code 

in the form of a connectivity matrix. The triangle is the simplest and most convenient 

geometric figure that can be used to cover a two-dimensional domain. An advantage 

of using a simple triangular shaped cell is the ability to generate grids aljout arbitrary 

geometries. Another advantage is the ability to add cells in high gradient regions of 

the flow field as well as those regions of the flow that are of interest without concern 

for the surrounding cells. The main disadvantages of using an unstructured mesh lies 

in the added complexity and memory requirements of the flow solver. 

The next section will review in general, research that has been reported in the 

area of unstructured grid flow code development. Other aspects of computational 

fluid dynamics will also be discussed that are precursors to the present research. The 

second section of this chapter will outline what was accomplished in this study and 

how it relates to other investigations. 

1.1 Review of Related Work of Previous Investigators 

In the recent past there has been a research thrust to develop flow codes that can 

be used on unstructured grids. Some of this development has come out of research 

in computer graphics [8]. The finite element methods have employed unstructured 

grids in structures problems and have recently been used to obtain solutions of the 

compressible flow equations. Peraire et al. [9] have reported solutions of the Euler 

equations in two dimensions using a finite element solution algorithm. They used 

linear triangular elements with explicit time stepping. The grid generation was done 

by the advancing front method. This technique will be discussed briefly in the chapter 

on grid generation. 



www.manaraa.com

3 

Holmes and Snyder [10] demonstrated the use of a Delaunay triangulator to 

generate a mesh about arbitrary geometries. The grid generation used in the current 

work is based on this technique. Holmes and Connel [11] later reported on the 

use of this triangular grid generation along with a body fitted quadrilateral mesh 

to solve the two-dimensional Navier-Stokes equations. The quadrilateral grid was 

used near a solid wall boundary where one-dimensional refinement was desired. The 

code was written in a quasi-three-dimensional form to include the effects of radius 

change, stream tube variation, and rotation which occur in turbomachinery blade 

row flows. A central difference finite volume algorithm was used with a Runge-Kutta 

time integration scheme for the computation of viscous flows. 

The finite volume method was used by Jameson and Mavriplis [12] to compute 

the solution of the two-dimensional Euler equations. Here comparisons were made 

between the use of a structured mesh and a structured mesh that had been tri­

angulated. A central difference formulation was used and an explicit Runge-Kutta 

scheme was incorporated to advance the solution to a steady state. A residual aver­

aging technique was added to relax the Courant-Fredrichs-Lewy limit. A multigrid 

scheme was also used to quickly remove the high frequency errors from the solution. 

Solutions were computed on a NACA 0012 airfoil and a KORN airfoil to demonstrate 

the capability of the unstructured computational technique. 

A comparison of triangular and quadrilateral grid based flow codes was made by 

Lindquist and Giles [13]. It was found that the second order node-based schemes of 

Ni and that of Jameson work as well on triangular grids as they do on quadrilateral 

grids. 

The Navier-Stokes ec[uations were solved by Mavriplis et al. [14] on a regular 



www.manaraa.com

4 

unstructured triangular grid with a five stage Runge-Kutta type scheme and multi-

grid. This research showed that it was possible to use highly stretched triangles 

when computing high Reynolds number flows about airfoils. The scheme was found 

to be competitive with the structured viscous flow solvers both in accuracy as well 

as computational efficiency. 

Several researchers have used upwind schemes on unstructured triangular grids. 

A Newton iteration method was used by Venkatakrishnan and Barth [15] to solve 

the Euler and Navier-Stokes equations implicitly. The inviscid fluxes were computed 

using the Roe flux difference splitting scheme. The viscous terms were formulated in 

two ways. The first approach made use of an approximation similar to the thin layer 

approximation for structured solvers. This means that only four cells were needed to 

compute the viscous terms. The second approach made no such approximation and 

required ten cells to compute the viscous terms. Computations were made for the 

NACA 0012 airfoil. 

Another study of the application of upwind schemes to unstructured triangular 

mesh based solvers was carried out by Barth and Jespersen [16]. The Euler equations 

were solved using a finite volume discretization and an explicit time stepping scheme. 

Both cell-centered and cell-vertex schemes were considered. A multi-dimensional 

reconstruction of cell averaged values was used with a Roe flux function to compute 

flux quantities on the edges of the control volume. First order and higher order 

schemes were used to compute flows on the NACA 0012 airfoil. The higher order 

scheme was used for computing flow about a three element airfoil. 

Whitaker and Grossman [17] used a Roe approximate Riemaiin solver and a four 

stage Runge-Kutta time integration on an unstructured triangular grid to obtain flow 



www.manaraa.com

5 

solutions. A non-standard weighting of the Runge-Kutta stages was used to accelerate 

the solutions to convergence. The scheme was demonstrated on a Mach 6.57 flow over 

a blunt body, a shock reflection problem, NACA 0012 airfoil, RAE 2822 airfoil, and 

a Karman-TrefFtz airfoil with flap. 

Unstructured grids have also been used by Caruso [18] to predict the performance 

of airfoils with leading edge ice accretions. Both Euler and Navier-Stokes solutions 

were computed. A central differencing scheme was used with an added isotropic dis­

sipation term to prevent odd-even decoupling. A fourth-order Runge-Kutta scheme 

was used to integrate the ecjuations in time. The study also included time dependent 

ice-growth problems. This showed that the use of unstructured grids allows for local 

grid refinement that is generally unavailable with structured grids. 

Unsteady flows have also been addressed with unstructured grids. Batina [19] 

computed flows with both a central difference scheme and an upwind method. A 

Runge-Kutta integration scheme was used with a global constant time step to main­

tain time accuracy. Computations were made on a harmonic rolling swept flat-plate 

delta wing. The central difference method was also used to compute the inviscid 

unsteady three-dimensional flow over the Langley supersonic fighter. The upwind 

Euler scheme was tested on the steady three-dimensional ONER A M6 wing. 

Unstructured grids have also been used to predict the inviscid flow over bodies 

in relative motion. Hase et al. [20] employed a cell-centered upwind Euler solver 

along with a point Gauss-Seidel relaxation scheme. Flow at a Mach number of 0.8 

was computed for a NACA 0012 airfoil falling away from a solid wall. 

Usab and Jiang [21] reported on a scheme to compute quasi-three-dimensional 

inviscid flow in turbomachinery cascades. The explicit Runge-Kutta finite-volume 



www.manaraa.com

6 

time-marching scheme was used on an adaptive unstructured grid. The solution 

scheme was demonstrated on a multi-element airfoil. Quasi-three-dimensional cas­

cade flow was predicted on the NASA Rotor 67 at three spanwise locations. 

High Reynolds number flows were addressed by Barth [22]. An edge based data 

structure was used in this formulation. Barth found it advantageous to use stretched 

cells in computing high Reynolds number flows and concluded that the triangulation 

method should minimize the maximum angle of a given stretched triangle. Turbulence 

modeling on unstructured grids was also addressed. .4 combination of an implicit 

sparse matrix solver and an explicit Runge-Kutta scheme was used to march the 

Navier-Stokes equations to a steady-state. Turbulent flow was computed over the 

RAE 2822 airfoil and an airfoil with a flap. 

Other implicit methods have been used by Venkatakrishnau and Mavriplis [23] 

to solve the matrix equation resulting from the discretization of the Eu 1er and 

Navier-Stokes equaWons. A preconditioned generalized minimum residual technique 

was developed to solve for the inviscid or viscous flows over various airfoil config­

urations. Three different preconditioners were tested with the solver (incomplete 

LU factorization(ILU), block diagonal factorization, and symmetric successive over-

relaxation(SSOR)). The iterative schemes using ILl' and SSOR as solvers were also 

investigated. 

Several researchers have extended their methods to three dimensions [24] - [26]. 

Baker [24] has addressed the problem of solid surface modeling for generating tetrahe-

dral meshes. Batina [26] has extended an implicit upwind solver to three dimensions. 

The flux difference splitting of Roe was used with a Gauss-Seidel relaxation proce­

dure. The inviscid flow was computed over a Boeing 747 aircraft. 



www.manaraa.com

7 

Recently an unstructured Euler solver was implemented on a massively parallel 

computer by Das et al. [27]. A multi-stage Runge-Kutta scheme was used to integrate 

the three-dimensional Euler equations. A node reordering technique was used to 

cluster local grid points in memory. This essentially reduces the bandwidth of the 

cell connectivity array. Inviscid solutions were computed on the ONERA M6 wing 

and an aircraft configuration. 

Researchers have often found it difficult to solve the compressible Navier-Stokes 

equations at low Mach numbers. Several investigators ha.\ e developed schemes on 

structured grids that solve the compressible equations at low Mach numljer by using 

a technique of preconditioning [28] - [31]. Choi and Merkel [28] used the Euler 

equations and computed flow over a bump at a Mach numlier as low as 0.05. The 

preconditioning in this case only affected the time derivative of the energy equation. 

Later Choi and Merkel [32] included time-derivative preconditioning for the Navier-

Stokes equations. To date none of the methods proposed for unstructured grids have 

utilized Mach number preconditioning. 

1.2 Scope of Current Research 

The research in this study considers the use of unstructured grids in predicting 

low Mach number flows through internal geometries. To date, there has not been 

much work done toward applying unstructured grids to viscous internal flows at low 

Mach numbers. 

The Euler or Navier-Stokes equations are discretized in finite vokime form using 

primitive variables; however, the conservation law form is retained. The equations are 

solved iteratively using the implicit Gauss-Seidel method. Another implicit method of 



www.manaraa.com

8 

solution used in this work is a commercially available sparse matrix package. Several 

iterative conjugate gradient based solvers and matrix preconditioners are considered. 

The grid generation is similar to that reported by Holmes and Snyder [10]. The 

method of Delaunay triangulation is used to discretize the computational domain. 

The initial points are the discretized boundaries. The interior is then resolved by 

adding new points to the computational domain that satisfy the Delaunay criterion. 

Computer memory is minimized by storing only the non-zero block matrices of 

the larger sparse matrix equation. Preconditioning of the time derivative term is used 

to allow efficient calculations at vanishingly small Mach numbers. The equations can 

be marched in real or pseudo time for a steady state solution. However, both real 

and pseudo derivative terms are retained so that time dependent prol)lems can be 

computed in later research. 

A coloring scheme was implemented so that the Gauss-Seidel algorithm could 

take advantage of the vector processor capabilities. This was done with an algorithm 

based on the four color theorem which was proven in 1976 through exhaustive com­

putation [33]. The added minimal memory requirements were offset by a significant 

decrease in computer time required by the colored Gauss-Seidel iterative procedure. 

The overall effect on the convergence rate was minimal as expected. 

Results are given for some typical test cases which ha.\'e been computed by 

other investigators on structured grids. Other test cases are used to demonstrate the 

capability of the unstructured grid flow code approach. Solutions are first shown for 

inviscid flow over a bump at subsonic and transonic Mach numbers. Viscous solutions 

are then presented for developing flow in a channel at various Reynolds numbers. The 

advantage of using temporal preconditioning was demonstrated when solving over a 



www.manaraa.com

9 

wide range of Mach numbers. The sparse iterative solver SITRSOL was also used for 

comparison with the Gauss-Seidel relaxation scheme. A symmetric sudden expansion 

was used to demonstrate the capability of the code to compute separated flows. The 

viscous flow over a cascade of tandem circular cylinders was also computed. Finally, 

the flow in a four-port valve at two different Reynolds numbers was computed to show 

the geometric capability that is available for applying boundary conditions through 

the use of unstructured grids. 



www.manaraa.com

10 

2. GOVERNING EQUATIONS 

The Navier-Stokes equations were used to model viscous fluid flow problems in 

this study. In conservation law form and physical coordinates these equations can be 

written in vector form as 

where the vectors 

and 

U = 

P 

pu 

pv 

e  

F = 

E = 

pu 

pu" p — Tx.r 

puv -  Txy 

{P + g)u — UTxx — VTxy + ((x  

pv  

puv — Txy 

0  

(2 .1 )  

pv" + P — Tyy 

{P + e)v  — UTxy — VTyy + ([y  

In this work only Newtonian fluids will be considered, so the shear stress tensors are 

defined as 



www.manaraa.com

11 

9 o 
' ^xx  = ~'^ f^{ '^x  4* %) + 2^%# = •^ f t{2ux — l'y), 

'^xy — fJ'{vx "i" Uy), (2-2) 

0 9 
^yy ~ + î^y) + 2/fUx = ^i . i (2vy  — Ux)-

(2.3) 
qx — —KTx,  

qy  = -nTy.  

If a further assumption is made that the gas is ideal, where p = PjRT with R being 

the gas constant per unit mass, the Navier-Stokes ec[uations can be written as 

with 

dQ{w) ^  dG[w) ^  dH[w) ^  ̂  

d t  dx  dy  
(2.4) 

w = 

P 

u 

V 

T 

Q = 

P 
T  
Pu 
~T 
Pv 
T  

Y'[(C'p  — R)T +  ̂  + 



www.manaraa.com

12 

G = 
Pu' + RP — Txx 

Txy 
Puv 

T 
Tp {CpT + +  ̂ ^ ) u  —  X I T X X  —  V T x y  +  ( [ x  

and 

H = 

P / r i  T  I  I  V  

Pv 
T  

- Tx y  

+ -RP - T y  y  

2 
T p {CpT + -g- + -2-)l' — U T x y  —  V T y y  +  q y  

The test cases presented in this work involve the laminar flow of air where the viscosity 

is assumed to follow the Sutherland formula, 

M 

3 
CiT^ 
r + Co 

(2.5) 

where and Cg are equal 1.458 x 10 ^kgf{m • s  • V^K)  and 110.4^ A' respectively. 

The equations are nondimensionalized by using the substitutions 



www.manaraa.com

13 

t 

X 

y 

ù 

V 

p 

f  

A 

R 

Ôp 

4 

C2 

^ref l^re f  

re f  

re f  
u  

"re/ 
V 

"re/ 
P 

fre/«;e/ 

T 
T^-rej  

H 
/S'e / 

R 

"re f l ' ^re f  
Cp 

"refl^ref 
C L 

(2.6) 

^S-e/ / \ / ' ^re  f  
Co 

l e f  

The ^ refers to a term that is nondimensional. The variables subscripted re f  are 

reference cjuantities specific to a particular flow calculation. 

The Navier-Stokes equations are now written in nondimensional form 

dQ{io)  ^  dGjw)  ^  d H j w )  ^  ̂  

d t  dx  dy  
(2.7) 

with 



www.manaraa.com

14 

w — 

P 

Ù 

V  

f  

and 

G = 

H = 

Q = 

P 
L f 

P 
T 
PÛ 
T 
Pv 

 ̂ 9 .) 

Pu^ 

PÛ 
T  

+ RP ~  ̂ xx  

PÙV Txy 

^{Cpf  +  ̂  +  ̂ )ù  -  ÛTxx -  î 'h t j  -  T: 

Pv 
T  

_  + \  +  \ ) v -  ù f x y  -  V T y y  -

p£l 
T 
-9. 

PÙV 
T  

+ RP-  T y y  

Cnj^rp 

where 

Txx — §^§(2î';r — Vy) ,  

~ + "2/)' 

^yy ~ ~ 

The Reynolds and Prandtl numbers are defined as 



www.manaraa.com

15 

P r e f ^ r e f ^ r e f  „ ^Pref l -h ' t f  
' / « r e /  • •  "  4 /  '  

respectively. It is important to note that though these equations are written in terms 

of primitive variables(P, u, u,!") that they are still in conservation law form. 

All subsequent equations are nondimensional so the ' is dropped for conve­

nience. 



www.manaraa.com

16 

3. GRID GENERATION 

The numerical solution of the Euler or Navier-Stokes equations requires the 

discretization of the computational region in such a way that the geometry as well 

as the flow physics is predicted to a desired accuracy. Typically, computational 

grids have been generated with an inherent global structure in mind. This structure 

results in having grid lines coincident with specified boundaries of the flow domain. 

There are several advantages to using a structured discretization. First, grids can 

be easily generated about simple geometries. Second, the flow solver can exploit the 

grid structure for increased speed. However, it is difficult to generate a structured 

grid about complex geometries without using special grid patching or grid overlaying 

techniques. These are techniques which allow the use of more than one grid to 

discretize a complex computational domain. Special com])uter coding is required 

to handle the individual grids as discretized regions and the intersections of the 

grids. Also, grid adaptation to geometry or flow features must be done within the 

restrictions of the grid structure. If local refinement is desired in a structured grid, 

an entire row of cells must be added to the computational domain. This often results 

in adding cells in regions of the flow where refinement is not rec|uired resulting in a 

more costly computation. 

Another method of discretizing a domain is to use an unstructured grid formu­



www.manaraa.com

17 

lation. The triangular shaped cell is the simplest geometric shajje that can be used 

to cover a two-dimensional computational domain. With an unstructured grid, indi­

vidual cells can no longer refer to their neighbors simply by incrementing an index 

as in a structured grid. Instead, the neighborhood of a cell is determined through a 

connectivity matrix. This connectivity matrix usually contains cell based information 

as well as edge based information. Details of the connectivity matrix required by the 

computer flow code developed in this work will be discussed later in this chapter. 

The use of a triangular unstructured grid formulation has some distinct advan­

tages over a structured grid. One advantage to using triangular cells is that with 

them it is easy to generate grids about complex geometries. This reduces the amount 

of time required to generate a suitable grid. Also grid adaptation can be done lo­

cally without adding unnecessary cells to other regions of the domain. As a result, 

the calculation becomes more com^^etitive with the structured grid Formulation. One 

disadvantage of using an unstructured grid is the added memory necessary for the 

connectivity matrix. The added level of complexity in writing the flow code is another 

disadvantage to using unstructured grids. 

Several methods can be used to generate an unstructured triangular mesh. One 

method is to simply place points in a domain and connect them by hand. This 

becomes inefficient very quickly as the number of points increase. The method of 

advancing front is another technique used to triangulate a. region [9]. This method 

uses a background grid to control the placement of points in a domain through in­

terpolation. The grid is generated by using the discretized boundary definition as 

an initial front and marching away from the boundaries into the desired triangulated 

region. A new point is placed in the domain based on certain prescribed criteria. 



www.manaraa.com

18 

Figure 3.1; The perpendicular bisection of the line connecting v,he points A and B 

These criteria could be the same as those used in the method of Delaunay triangula­

tion which will be described later. The edges that connect to the new point to form 

a triangle now define the front. The fronts continue to advance into the domain from 

all boundaries until they coalesce and the entire region has been triangulated. The 

method of Delaunay triangulation is used in this work and will lie described next. 

Figure 3.1 shows two points, A and 5, placed in a two-dimensional plane. The 

line that passes through points C and D is defined by the locus of points such that 

points  with x^y coordinates below the l ine are closest  to  .4 and points  with x.y 

coordinates above the line are closest to B. The same geometric construction can be 

done to a set of points, Fig. 3.2. Here a line is terminated when it intersects another 

since points crossing the intersection would violate t he same geometric construction 

requirements of another set of points. This is done for every pair of closest points. 

The result is a region covered with nonoverlapping polygons. This is called a Dirichlet 

tessellation. An interesting feature of the individual polygons is that their vertices 



www.manaraa.com

Figure 3.2: Dirichlet polygons 



www.manaraa.com

20 

Figure 3.3: Delaunay triangulation 



www.manaraa.com

21 

Figure 3.4: Boundary definition of a square hole in a rectangular outer boundary 

are the centers of circles that pass through the three points of the triangle whose 

edges are bisected by the sides of the polygons, such as point .1 in Fig 3.2. These 

triangles represent the Delaunay triangulation of the domain. A ti iangle is considered 

Delaunay if the circle that passes through the vertices of the triangle contain no other 

points of the domain. The triangle 1 of Fig. 3.3 is Delaunay. I'he triangle 2 is not 

Delaunay since its circumcircle surrounds other points in the region other than its 

three vertex points. There are many methods of generating a Delaunay triangulation 

of a region. The method described above starts with a domain t hat is covered with 

points. The points are then triangulated according to the Delaunay criterion. 

The method used in this work follows a path similar to thai of Holmes and Sny­

der [10] to triangulate a region. First, the boundaries that describe the computational 

domain are defined, Fig. 3.4. Here a square hole is surrounded by a rectangular outer 



www.manaraa.com

Figure 3.5: Discretization of the boundaries 

// 

Figure 3.6: Triangulation of boundary points 



www.manaraa.com

23 

boundary. The region that is to be triangulated is the area between the inner hole 

and the outer boundary. Next, the boundaries are discretized in a counter-clockwise 

direction, Fig. 3.5. These discrete points are then triangulated using the Delaunay 

criterion(recall that a triangle whose circumcircle contains other points in the com­

putational domain is not Delaunay), Fig. 3.6. The result of this triangulation is 

not usually desirable. Points must now be added to the domain to obtain a reason­

able grid. A new point can be added based on any criteria one chooses. The grid 

point insertion in the current work is done according to one of the following three 

geometric criteria: im%)rove the triangle with the smallest aspect ratio, reduce the 

maximum area triangle, reduce the size of the triangle with the largest circumcir­

cle radius. These geometric constraints can be used in any combination and their 

definitions will be described below. Some other criteria that could be used for local 

retriangulation are increase minimum angle, decrease maximum angle, and maintain 

equal length sides, to name a few. 

One refinement criterion used in this work is based on the definition of the aspect 

ratio of a triangle. 

Aspect  Ratio = — 
2rc 

where ri  is the radius of the inscribed circle of the triangle. 

(3.1) 

(3.2) 

and rc is the radius of the circumscribed circle of the triangle. 



www.manaraa.com

24 

abc 
(3.3) '  ̂  — j  

4y 5(5 — o)(5 — b){s — c) 

The variable 5 is defined as the semiperimeter of a triangle, 

(3.4) 

and the quantities a,  b,  c  refer to the lengths of the sides of the triangle. A new point 

is placed at the circumcenter of the triangle with the smallest aspect ratio. 

Another refinement criterion is based on the area of a triangle. 

where 5 is the semiperimeter defined above. A new point is placed at the circumcenter 

of the triangle with the largest area. 

A third criterion is based on the radius of the circumcircleof a triangle as defined 

in Eq. (3.3). Again a new point is placed at the circumcenter of the triangle with 

the largest circumcircle radius. This criterion takes into account both triangles with 

bad aspect ratios and ones with large areas. 

As an example, the aspect ratio criterion was used to put a new point in the 

previously described domain. First, the triangles were searched for the one with the 

smallest aspect ratio. Fig. 3.7. A new point was placed at the circumcenter of the 

triangle. This point actually lies outside the targeted triangle. Recall that a triangle 

is not Delaunay if any of its three vertices lies within the circumcircle of another 

triangle. The triangles that violate the Delaunay criterion are now deleted. Fig. 3.8. 

The points of the old triangulation, however, are not removed. Tliese old points may 

(3.5) 



www.manaraa.com

25 

Figure 3.7: Triangle with bad aspect ratio and its circumceiitei-

Figure 3.8: Deletion of cells that violate the Delaunay criterion 



www.manaraa.com

26 

Figure 3.9: Local retriangulation 

now simply be connected to the new jjoint to form triangles that automatically satisfy 

the Delaunay criterion, Fig. 3.9. This refinement then continues until a satisfactory 

grid is obtained, Fig. 3.10. 

The flow code recjuirements dictate the type of output that the grid generation 

scheme must provide. A connectivity array must be generated for an unstructured 

grid so that a cell neighborhood is completely defined for the flow code. The flow 

code can be a vertex based or a cell center based scheme. The \ ertex based scheme 

uses a dual cell as its control volume. The dual cell could be the Dirichlet polygons 

referred to earlier in this chapter. This scheme requires certain geometric information 

about the cells that share a given vertex for use to compute the flow domain. The 

code in the current work is based on a cell centered scheme. Here the triangle itself 

is the control volume used in the finite volume formulation. 



www.manaraa.com

27 

Figure 3.10: Final coarse triangulation of domain 

NCELL(1:3,49)=37,118,16 

NCELL(4:6,49)=1,53,62 

NFACE(1:2,118)=49,513 513 

Figure 3.11; Connectivity requirements for a single cell 



www.manaraa.com

28 

Connectivity is determined by cell nodes, cell faces, and face cells. Cell nodes 

are the nodes at the vertices of a triangle. The cell faces are the edges of a triangle. 

The face cel ls  are the cel ls  that  l ie  on ei ther  s ide of  a  given edge.  Typical ly the x,  

y coordinates of the cell nodes are the only grid floating point numbers recjuired as 

input by a flow code. The grid connectivity is defined through integer arrays. Two 

connectivity arrays were needed by the flow code developed in this work to define 

the discretized geometry of a computational domain. Fig. 3.11. The two-dimensional 

array NCELL contains the edge and node connectivity for a given cell. The first 

dimension of NCELL contains 6 elements.  The second dimension has a  length n.  

where n is the total number of triangular cells in the computational domain. Consider 

the cel l  number i .  The first  three elements of  the f irs t  dimension of array NCELL 

are the edge numbers of cell i. The last three elements of the first dimension of 

array NCELL are the vertex node numbers of cell This allows the access to the 

edge and node numbers that define a given cell, in this case cell number i. The 

array NFACE is also two-dimensional. It contains cell connectivity for a specific 

edge.  The firs t  dimension is  of  length 2.  The second dimension is  of  length in.  

where m is the total number of edges that make up the computational domain. The 

second dimension identifies the edge(in this example, j). The first dimension of array 

NFACE contains the cell numbers that are adjacent to one another sharing the 

common edge j. These two integer arrays along with the floating point arrays x and 

y define the geometry for the flow code. 

Boundary information must be defined explicitly. Solid wall, exit, and inlet 

boundaries are implied through the edge connectivity array. NFACE. For a solid 

wall boundary, one of the elements of the first dimension of the array NFACE will 



www.manaraa.com

29 

contain the value 0. This tells any cell that refers to that edge that it borders a 

solid wall boundary. Similarly, an exit boundary is adjacent to a cell number of 

—1, and an inlet boundary borders a cell number of —2. Periodic and symmetric 

boundaries are handled through special connectivity. This again is done by including 

the appropriate cell information in array NFACE. A symmetry boundary cell will 

have an edge that borders itself. So the first dimension of array N F ACE for the 

symmetry face will have both elements referring to the same cell numlier. For a 

periodic boundary the elements will refer to cell numljers that are separated by one 

periodic pitch. Boundary conditions will be addressed later. 

This unstructured grid generation code can handle both simply and multiply 

connected regions, Figs. 3.12, 3.13. 



www.manaraa.com

Figure 3.12: Triangulation of a simply connected legion 



www.manaraa.com

31 

Figure 3.13: Triangulation of a multiply connected region 



www.manaraa.com

32 

4. NUMERICAL APPROACH 

This chapter describes the finite volume discretization used for the Navier-Stokes 

equations. A preconditioning technique will be discussed which allows the efficient 

solution of the compressible flow equations at low Mach numbers. The numerical 

implementation of the boundary conditions is then examined. Two methods of adding 

artificial dissipation to the scheme to prevent odd-even decoupling are then discussed. 

Finally, the methods used to solve the resulting matrix equation are described. This 

includes a coloring scheme used for vectorization. 

The finite volume formulation of the governing equations is well suited for ap­

plication to an unstructured discretization of the flow domain. The nondimensional 

Navier-Stokes equation written in differential form Eq. (2.7) is first recast in integral 

form for an arbitrary volume, as 

Using Gauss's theorem, the area integral of the flux derivatixes can be rewritten 

as the surface integral of the flux quantities around the area Q. This allows the Eq. 

(4.1) to be written as 

4.1 Discretization Technique 

(4.1) 



www.manaraa.com

33 

M Içi  ̂Jr ~ (4-2) 

For each control volume consisting of a triangular element, Ec]. (4.2) is evaluated as 

d 3 
H i^j ̂ yj~^j ̂  = 0. (4.3) 
i=i 

where Q j  is the vector of conserved cjuantities in cell i ,  G j  and H j  are the flux vector 

quantities across edge j, and Axj and Ayj are the differences in Cartesian nodal 

coordinates that define edge j. The summation on j proceeds in a counterclockwise 

manner around the edges of  cel l  i .  Also i t  is  understood that  Axj stands for  x{en(l)  — 

x{beginning) as the evaluation proceeds in a counterclockwise manner around the 

sides of a control volume. The quantity Aj is the area of cell i defined as 

s[s — a)(5 — b){s — c). (4.4) 

The variable s is the semiperimeter of cell i ,  defined previously Ijy Eq. (3.4), and 

the quantities a, b, c refer to the lengths of the sides of the cell i. Cell face flow 

quantities required by Eq. (4.3) for the computation of the inviscid flux terms were 

approximated by using the average of the cell centered values on l)oth sides of a given 

cell face. The numerical integration of these c|uantities around I he edges of the cell 

results in a central difference scheme that is second order accurate in space. The 

viscous terms require the computation of the derivatives on the faces of the triangle 

control volume. To compute these terms, the level 2 cells shown in Fig. 4.1 were 

used and a different path integral was evaluated. The algorithm used to obtain the 

cell numbers and orientations is discussed in Appendix A. Again this yields a second 



www.manaraa.com

34 

order accurate scheme in space. A total of 10 cell centered c(uantities was used 

in the computation of the viscous quantities of the summation term of Eq. (4.3). 

Specifically the viscous terms in the x-momentum equation are written as 

3 3 p 
^ {-Txx A y + T x y  A x ) j  =  ^  

j=l  j=l  J 
(4.5) 

where the summation is over the three sides of the triangular control volume. The 

definition of the derivatives 

dii  dv 

f ' ? '  ( « )  dv ou 

must be given on all three edges of the triangular control volume. Consider the 

evaluation of a typical x and y derivative term on edge number 12 shown in Fig. 4.2. 

This is the edge that represents the border between cell /I and B. Recall that all 

geometric quantities are computed in a counterclockwise manner. The derivatives 

can be recast in integral form as 

du I f  

dx 

and 

5̂  - /r' 

where S' is the sum the areas of the two cells across a given edge, and the integral is 

along the path that traverses the outer boundary of the two cells in a counterclockwise 



www.manaraa.com

35 

direction. These derivatives are interpreted as mean values over the area S'. The 

above derivatives can be written for side 12 as 

fi Il2 = + ̂ e) ̂  + "F) ̂  2/26+ 

iW + "C) ̂  V I S  + + "£)) A 7/14] 

and 

% I12 = -3^ [\ iyB + ^ -^25 + ^ •^•26 + 

\ i^A + ̂ C) ^ -^13 + i(t\4 + ^ •''wl • 

Similar terms are computed for sides 13 and 14 of the cell .4. These equations are 

then written in delta form by substituting 

u = Û + Au 

and 

V = V A t) 

into Eq. (4.5) where û is a provisional value. The delta form will be discussed 

again later when presenting the linearization of the convective tei ms. The additional 

cells used in the computation of the viscous terms affect the storage required for the 

solution of the resulting ecjuation. The storage requirements will be discussed in more 

detail in the section on solvers. 

The system of equations was integrated in time using an implicit scheme written 

in delta form. Newton linearization was used on nonlinear terms. For example, the 

terms 



www.manaraa.com

36 

Figure 4.1: Cell level dependence 

e ^ c i ^  +  ̂ A u + i A P - ^ Ù T .  ( 4 . 9 )  

^ = . ^  +  | A . . +  i A P - | i A : f  

are substituted into the continuity and momentum equations. The " terms take on 

provisional values of the primitive variables; and the delta quantities represent the 

differences between values at the new time level and the provisional values, e.g., 

Au = u — Û. These equations can be iterated at a specific time level until the 

linearization errors are reduced to a satisfactory value. For steady state problems, 

this iteration process at each time level is not necessary. Similar terms are used to 

linearize the energy equation. However, the nonlinear dissipation terms in the energy 

eciuation were linearized by evaluating them explicitly in terms of the provisional 



www.manaraa.com

37 

Figure 4.2: Cells used in the computation of viscous terms for cell A 



www.manaraa.com

38 

values, rather than using Newton linearization. The result of the above substitutions 

is the matrix equation 

Ax = b. (4.10) 

The matrix A contains the linearized terms which multiply the vector of unknown 

delta quantities, x. The vector b represents the residual of the equations which should 

go to zero as the solution approaches convergence. There are four equations written 

for each cell in the computational domain. For the central difference formulation 

given here, each cell is dependent on the level one cells through the convective terms 

as well as the level two cells through its diffusive terms, as illustrated in Fig. 4.1. 

This along with the unstructured grid yields a sparse matrix whose elements are 

block 4x4 matrices. The general row of the matrix A has ten non-zero blocks of 

coefficients. An example of a typical row of the A matrix is shown in Appendix B. 

The number of blocks vary near a boundary. 

The solution of Eq. (4.10) is not straight forward. Several methods of solution 

will be discussed later in the section on sparse matrix solvers. The results from 

the solution of the matrix equation represent the average of the flow (quantities over 

the entire cell. The values that were computed depends on the accuracy of the 

scheme(e.g., a second order accurate scheme will give a linear distribution of the flow 

quantities in the cell). If a solution were to be reconstructed based on the accuracy 

of the current method on the discretized flow domain, the solution would be linear 

within a given triangular cell. The global accuracy of the method was second order. 



www.manaraa.com

39 

4.2 Preconditioning 

Solving the compressible flow equations for low Mach number cases is difficult 

because the resulting system is stiff due to the large ratio of acoustic and convec-

tive velocities. Even the convergence rate of predominantly supersonic flow can be 

slowed or halted if it contains local regions of low Mach number flow. A temporal 

preconditioning is used in this work to remove this stiffness. 

The approach will be demonstrated by using the Navier-Stol<es equations in one 

dimension. The nondimensional form of these equations is written as 

dQ{w) dG{w) _  dGyjic)  _  

dt  dx dx 
(4.11) 

where 

P 

u 

T 

P 
W 

Pu I Pir  
. 7r + 2 -RT . 

0 



www.manaraa.com

40 

The quantity M is the reference Mach number, defined as which 

appears when the equations are cast in nondimensional form. This equation can be 

rewritten as 

. d w  d w  d G v { w )  

--lb--. 

where the Jacobian matrices, and Ax are defined as 

(4.12) 

Af = 

1 
~HT 
u 

W 

1 , u 

and 

Ai- = u 

u 
TW 
2 

+ 1 

0 

P 
~RT 

m2(7-1) P 
—y—-RT 

p 
~HT 

M'"(7—1) p 

2Pu 
'RT 

RJ^ 
Pu 

, Âr? 
M"(7-1) Pu 

5 J 

P u  

Pu l)  Pii^  
R T -

(4.13) 

(4.14) 

It is important to note that the quantity P f R T  is well behaved as Mach number 

goes to zero since it is equal to the nondimensional density, plp,.^f- Also note that 

R — (7M^)~^. The Jacobian matrices, A^ and Ax can be rewritten as 

A, = 'yM^u 

0 

P 
TW 

P 

Pu 

A,T2 I M^(7—l)u 7M^(7-1)P 7M'^(7 —1)P» 
M + 2T 2T ^ 

(4.15) 

and 



www.manaraa.com

41 

T 
P 

IW 

A x =  3^ + 1 

•,m\ + P g + M*{^ -  1)^ 

2Pu 
'W 

Pu 7M'^(7—1)P»,^ 

(4.16) 

The first column of the Jacobian matrices contains the coefficients associated 

with pressure. In A^, these coefficients go to zero as the Mach numlser goes to 

zero. This results in the acoustic time scale restriction associated with pressure. 

As the Mach number approaches zero, a vanishingly small time step is needed to 

keep the coefficients multiplying pressure finite. More importcintly. the system of 

equations become singular as the Mach number goes to zero, as will be discussed 

below. For a finite time step, the time derivative of pressure will vanish from the 

equations. In the limit as the Mach number approaches zero, the equations reduce to 

their incompressible form. Since the time derivative of pressure does not appear in 

this form of the incompressible equations, the equations contain no pressure history. 

There is a more mathematical way of looking at this problem. The system can be 

rewritten in the form 

As Mach number, M, becomes small, A^ becomes ill-conditioned, i.e., the determi­

nant of Af becomes small and errors due to round off error will become large when 

tem is singular. The result is often slow convergence due to t his stiffness when using 

a compressible code to compute a flow at very low Mach number. In addition, the 

(4.17) 

computing Af In the limit as M goes to zero, A^ ^ is unbounded and the sys-



www.manaraa.com

42 

eigenvalues([/ +  C ,  U  —  C ,  and U ) o {  the Jacobian matrix become farther apart as 

the Mach number goes to zero. A remedy for this is write the equations in the form 

.  dw dw dw dG{w) 

The preconditioning Jacobian matrix, Ap, is defined as 

(4.18) 

A p  =  

1 
T 
u 
T 

0 

P 
IW 

RT-
Pu 

1 M ^ H — l ) u  7M^(7—1)P 77l/'^(')—l ) P t t  
7 + — TT— ^ 

(4.19) 

7 ' 2YT IT 2T-

This Jacobian matrix used in the preconditioning is of the same form as the matrix 

Af, but the dependence of Mach number is removed from the terms that are caus­

ing the ill-conditioning. This essentially attempts to cluster the eigenvalues around 

the convective speed. It may be possible to simplify Ap by setting some of the 

nondiagonal terms in columns two and three equal to zero. 

The definition of the vector lo, the Jacobian matrices Af and Ax - and the viscous 

flux vector remain unchanged. The parameter T is called the pseudo time. 

For a time dependent calculation at low Mach number, the preconditioned equa­

tions are advanced in the pseudo time frame as well as the real I ime frame. At each 

physical time step, the equations are iterated to convergence in pseudo lime. At this 

point the pseudo time term vanishes and the time dependent Navier-Stokes equations 

are satisfied. The pseudo time iterations also remove the linearization error from the 

solution at each physical time level. If the low Mach number How computation is 

steady, it is only necessary to integrate the equations in the pseudo time frame. This 



www.manaraa.com

43 

is done by setting the physical time step to a very large number to remove the effect 

of the physical time derivative from the preconditioned ecjuations. 

At higher Mach numbers the pseudo time term is not needed; although conver­

gence does not appear to deteriorate with its continued use. 

Pseudo time terms for the full two-dimensional equaMons are added to the di­

agonal blocks of the sparse matrix, A, in Ecj. (4.10). These terms are formed by a 

direct extension of the one-dimensional example above. 

4.3 Artificial Dissipation 

Artificial dissipation was needed in the current implementation of the flow equa­

tions to prevent the odd-even decoupling seen in central difference computer flow 

codes. Two schemes were used in this work. The first scheme was based on the 

research of Jameson and Mavriplis [12] and was used specifically lor inviscid subsonic 

and transonic test cases. . The second version was developed t o be used with the 

low Mach number test cases where preconditioning was employed. Both dissipation 

schemes were added explicitly to the system of flow equations. 

The first dissipation scheme adds the dissipation based on the conserved vari­

ables, p,pu,pv, and e. The dissipation must be constructed such that it does not 

effect the accuracy of the numerical scheme in smooth regions of the flow. This can 

be done by adding a biharmonic operator to the original scheme in a conservative 

form. This was done to insure that no mass, momentum, or energy was added to the 

flow field in the sum over the entire flow domain. The flow field could also contain 

some large pressure gradients as in the region near a shock. Here the biharmonic op­

erator would tend to smear out these discontinuities. A pressure switch was used to 



www.manaraa.com

44 

detect the location of the shock and the biharmonic operator was turned off. Instead, 

a Laplacian operator was used near discontinuities to change the overall scheme to 

be locally first order. The Laplacian and biharmonic operators used in this code 

correspond to the second and fourth differences added to centrally differenced struc­

tured grid codes. Since the main code was written in delta form based on the flow 

primitives, it was necessary to compute the local conserved variables. The undivided 

first difference of the variables were then computed on the edges of the triangle and 

then summed over its three edges to obtain the second difference for the cell. This 

can be represented as 

where U  was the vector of conserved variables. The summation is over the index 

j which represents the neighboring cell numbers. The index i is the cell number 

associated with the newly constructed second difference. So tlie right hand side of 

Eq. (4.20) shows the computation of the first difference on t he edges as well as 

the summation to give the second difference for cell i. The pressure switch was 

constructed in the same way except that it was normalized by the average of the 

t h r e e  s u r r o u n d i n g  c e l l s  a n d  c e l l  i .  

Next the third difference was computed on the edges of all triangle cells. This 

was then used in conjunction with the first difference and some weighting functions 

to construct the appropriate combinations of Laplacian and biharmonic dissipation 

operators. 

3 
(4.20) 



www.manaraa.com

45 

Hj 
At  Z [ U j l - W i  

.i=i 
VISC^ 

At  t j  

3 

Z l«i2 3%i2 (4.21) 

i i  The fraction kJ represents the average of the largest local eigenvalue. The quantity 
^ H j  

visci contains the normalized pressure switch and a constant coefficient of 0.5. It has 

been found that the use of the biharmonic operator in the presence of a discontinuity 

was destabilizing, so the weighting function 

visc<^ = C^max{0,visc-^ — visc'i) 

was used. Here the value of visc^ takes on the value of 0.0 when the weighting 

coefficient 1Û.SC1 becomes large. The constant 0.03125 was used for the quantity 6*3. 

This term was then included explicitly on the right-hand-side of the system 

of equations. This type of artificial dissipation was not new and has been used 

extensively by other researchers. 

A second type of dissipation was developed to be used with the temporally pre­

conditioned scheme. This form of the dissipation was used iov t he viscous subsonic 

flows computed in the present work. Here a biharmonic operator was used on the 

primitive flow variables. So similar to Eq. (4.20) the second difference of the primi­

tives were computed as 

3 
m2 = Z 

i=i 
3î(' 

where w was the vector of primitive variables. Again the summation was done over 

the index j. The result represents the second difference of the variables in cell i. The 

fourth difference is then computed by summing the third difference over the edges of 

the cell, 



www.manaraa.com

46 

aPi4 = £ ["Pi2] - ̂m2-
i=i 

The resulting fourth difference was then premultiplied by the preconditioning matrix 

Af shown in Eq. (4.13). Then it was multiplied by the appropriate coefficient to 

make it consistent with the other terms and included explicitly on the right-hand-side 

of the system of equations. 

4.4 Boundary Conditions 

To solve the Navier-Stokes equations on a given computational domain it is 

necessary to impose the appropriate boundary conditions. The specified numerical 

boundary conditions will depend on the physics of the real flow that is being pre­

dicted. The inlet and exit boundary conditions will be discussed From a characteristics 

point of view. The eigenvalues of the spatial Jacobian matrix are used to determine 

how the boundary conditions are imposed at an inlet or exit. Without precondition­

ing,  the eigenvalues of  the Jacobian matrix associated with the derivat ive in the x 

direction are U, U, U C, and U — C, where U is the normal velocity component to 

the boundary surface, and C is the speed of sound. These eigenvalues are modified 

when preconditioning is applied to the system. This will be discussed later in this 

section. Figure 4.3 shows the subsonic inlet and exit boundaries and their respective 

characteristics. At the inlet, for subsonic flow where C is larger than (J, the three 

c h a r a c t e r i s t i c s  U ,  U ,  a n d  U  +  C  c o m e  f r o m  u p s t r e a m  w h i l e  t h e  c h a r a c t e r i s t i c  U  —  C  

comes from downstream. This gives the inlet boundary condition that three quanti­

ties must be specified, and one quantity extrapolated from the interior of the domain. 

For the subsonic exit, the same characteristics point at the boundary. To impose this 



www.manaraa.com

47 

Inlet Exit 

U+C > C U-C 

U.U-^ 

U+C U-C 

u,u-> 

Figure 4.3: Subsonic inlet and exit boundary conditions 

boundary condition, three quantities are extrapolated from upstream, i.e. from inside 

the computational domain; and one must be specified from outside the computational 

domain. For the specification of supersonic boundary conditions where C is smaller 

than U, the four characteristics come from upstream. Here it is necessary to specify 

four quantities at the inlet. At the exit, the four quantities are extrapolated to the 

exit. Figure 4.4 shows the supersonic inlet and exit boundaries and their respective 

characteristics. For a cell centered unstructured grid approach this means locating a 

boundary cell and specifying the necessary flow quantities across its edge in a ghost 

cell to give the correct conditions at a boundary. 

For the subsonic viscous flow cases in this study, the inlet boundary conditions 

were imposed by specifying the velocity components, u and v. as well as the static 

temperature, T. The static pressure was extrapolated from the interior to the inlet. 

At the exit, u, v, and T were extrapolated downstream. The static pressure, P. was 

specified. Velocity components were specified in the level 2 cells such that there was 



www.manaraa.com

48 

Exil 

U.U^ 
U-C -> 

Figure 4.4; Supersonic inlet and exit boundary conditions 

no change at the inlet boundary of the computational domain. At the solid wall 

the static temperature was specified. The u and v velocity components were set to 

zero to enforce the no-slip condition. The implementation of the no-slip boundary 

condition is shown in Fig. 4.5. The Cartesian velocity components were specified in 

cell B such that the average value at face a — b was zero. Static pressure was specified 

as symmetric in the ghost cell to give a zero normal derivative at the solid surface. 

The velocities were specified in the level 2 ghost cells antisymmet rically such that the 

no-sHp boundary condition was enforced at the wall. The viscous fiu.xes were then 

computed as usual. Symmetry and periodic boundary conditions were imposed by 

simply specifying the appropriate cell connectivity. .At a symmetry boundary cell, 

values were reflected across the boundary, Fig. 4.6. At a pei iodic boundary cell, 

values were transposed by the periodic pitch of the computational domain. Fig. 4.7. 

For supersonic viscous flow, boundary conditions at a solid wall remained the 

same as in subsonic flow. At the inlet, all flow quantities. P. u. v. and T were 



www.manaraa.com

49 

C 

Figure 4.5: Solid wall viscous no-slip boundary condition 



www.manaraa.com

50 

502 

Symmetry Boundary 

502 

Figure 4.6: Symmetric boundary condition 

Periodic Boundary 
/ \  

502 

Pil ch 

\l  Periodic Boundary 

502 

Figure 4.7: Periodic boundary condition 



www.manaraa.com

51 

specified. At the exit all the flow quantities were extrapolated. 

It is important to note that one of the test cases computed to verify the code was 

inviscid. For this, the viscous boundary conditions described above were modified 

appropriately. Since the inflow and outflow were subsonic, it was only necessary to 

modify the no-slip solid wall boundary condition to a tangency boundary condition. 

With the present cell centered scheme, this was done by reflecting the a velocity 

component about the solid wall symmetrically and reflecting the v velocity component 

antisymmetrically. An example of the enforcement of the wall tangencv boundary 

condition can be seen in Fig. 4.8. The normal and tangential \elocit\- components 

of cell A, and respectively, were computed as 

where and represent the Cartesian velocity components of the resultant ve­

locity vector shown in Fig. 4.8 associated with cell .4. The quantities and 

A2/^^ are the geometric differences along side a — b of cell A. The corresponding 

normal and tangential velocity components were set in cell B as 

and 

y/vg = -10V4 

and 



www.manaraa.com

52 

The actual Cartesian velocity components in cell B were then computed as 

and 

MrD D 

'ah 

These velocities were then used in constructing the matrix equal ion and enforced the 

wall tangency condition. Cell B does not exist in memory at the boundary. It is only 

presented here for clarity. The contributions of cell B were included when computing 

of the coefficients for cell A. Similarly, the viscous flux contributions in the level 2 

ghost cells were included in their complimentary cells that reside in the flow domain. 

In the current work, temporal preconditioning was used to compute low Mach 

number flows as described in the previous section. The preconditioning did not affect 

how the boundary conditions were specified, but it is interesting to note that the 

eigenvalues of the system were modified. The eigenvalues must now be obtained 

from the matrix that results from the product Ap~'A;?-- In one dimension 

A--1 
P 

0 

uRT 

Rt^ 

P 
2HT HRT 
RT 
~F 0 

7M4(7-l)f 
jr 2H jr 

where 

7M^(7 — l)Pu M"(7 — l)Pu I 
H = + .1 + 

RT 2T^ -l ' iRT-

The eigenvalues for the preconditioned system can be computed by solving either 



www.manaraa.com

53 

C 

Figure 4.8: Solid wall inviscid tangencj- boundary condition 



www.manaraa.com

54 

I Ap ^Aa; — AI |— 0 

or 

I Ax — AAp 1= 0 

for A. One eigenvalue remains unchanged that is A^ = U. The other two eigenvalues 

A2 3 for the given one-dimensional system take on a similar but yet a more complex 

form than that described by Withington et al. [31]. However, in the limit as Mach 

number approaches zero, the eigenvalues of the system are 

X l = U  

and 

U±\fW+ÂÏT 
^2,3 = 2 • 

By substituting in the appropriate nondimensional quantities the resulting ratio of 

largest to smallest eigenvalue takes on the value of (1 + \/5)/( 1 — \/5). This is the 

same quantity that was obtained by Withington et al. [31] with the ratio of specific 

heats set equal to one in the present work. The preconditioning essentially allows all 

of the equations of the system to be integrated at the same pseudo-time rate. This 

can be compared with a scheme without preconditioning where the ratio of largest 

to smallest eigenvalues is infinity. 

4.5 Sparse Matrix Solvers 

The system of algebraic equations being solved in the present implicit unstruc­

tured grid formulation is represented by Eq. (4.10). The matrix A is sparse. A 



www.manaraa.com

sparse matrix is one in which most elements are zero. Also, there is usually no par­

ticular pattern to the nonzero elements when the matrix arises from an unstructured 

grid formulation. However, the blocks on the main diagonal of this sparse matrix 

always have some nonzero entries. Figure 4.9 shows a representative form of the 

sparse matrix A. The solid squares represent 4x4 blocks with at least the diagonal 

elements of the block being nonzero. The remaining blocks contain zeros. In the 

present method, a two-dimensional viscous flow computation requires a maximum of 

ten 4x4 blocks in each row of the A matrix. The block local ions in a given row 

represent the connectivity matrix for the level 1 and level 2 cells that surround the 

cell which requires the solution. The block matrix that is identified with this cell 

is the diagonal element for that row. A given row of the A matrix consists of six 

blocks which contain the convective flux information, while \iscous flux information 

can be contained in all ten blocks. Some rows of the A matrix may contain fewer 

blocks since boundary condition information can be included only through blocks 

that represent cells that reside inside the computational domain. Recall that ghost 

cells were not included explicitly as part of the solution. In contrast, an implicit 

structured solver can be written such that the resulting A matrix on the left-hand 

side has some special structure that allows the matrix equation t o be solved by some 

well established methods. The equations can often be cast in a form that results in a 

block bidiagonal or block tridiagonal matrix. This structure is iiol generally available 

to the solution of the flow equations written for an unstructured grid. The method 

for solving the sparse matrix equation that results from the unstructured formulation 

can be direct or iterative. The direct method is usually not chosen since it requires a 

large computational effort compared with most iterati\ e methods. In addition, if the 



www.manaraa.com

56 

size of A is large, a solution is difficult to obtain by a direct method due to roundoff 

errors. Specialized direct solvers have been developed which take advantage of the 

sparseness of the matrix A. The Yale Sparse Matrix package [34] is an example of 

this type of technology. 

Several iterative methods were examined in this work. The first was a point 

Gauss-Seidel scheme where only the diagonal elements of the diagonal blocks of ma­

trix A were retained on the left-hand side as unknowns. This scheme was successful 

for many of the simpler problems but was prone to divergence when starting with 

poor initial conditions. It seemed to be very sensitive to lack of diagonal dominance. 

Another iterative scheme used was the point block Gaiiss-Seidel method. Here 

the diagonal 4x4 blocks of matrix A were retained on the left hand side. The re­

maining matrix equation was solved using LU decomposition. The L and U matrices 

refer to the lower and upper triangular decomposition of tlie diagonal l)lock of the 

matrix A This was found to be more robust than the previous scheme. 

Even though the full sparse block matrix is # x jV, it is only necessary to store 

the nonzero blocks. This gives a maximum block matrix of 10 x A' for a viscous code. 

However, the bandwidth could still be the maximum, N. 

Since the grid is unstructured, the boundary conditions can be scattered through­

out the entire matrix. They are not clustered at the top or Ijottom of the matrix as 

in structured codes. 

The commercially available sparse iterative solver. SITRSOL [35]. which resides 

on the Cray YMP as a callable subroutine was also evaluated for solving the above 

matrix equation. SITRSOL takes advantage of the matrix sparseness by only storing 

the nonzero entries. The package makes available to the user se\eral iterative meth-



www.manaraa.com

57 

[A]= 

Figure 4.9: Form of sparse matrix A 



www.manaraa.com

58 

ods as well as preconditioners for solving non-symmetric positive indefinite sparse 

linear systems. In the present work the bi-conjugate gradient method, the general­

ized minimal residual method, and the generalized conjugate residual method were 

considered. An incomplete LU preconditioner was also used. These three iterative 

methods are of the preconditioned conjugate gradient type. A general description 

of the conjugate gradient method with and without a preconditioner will be given 

below based on the works of Golub and Van Loan [36], Saad and Schultz [.37], and 

Press et al. [38]. 

The conjugate gradient method is a technique that minimizes a Function along 

vector paths that are linearly independent. These vector paths are called conjugate 

directions. The method is based on the method of steepest descent used in problems of 

optimization where a function needs to be either minimized or maximized. .A, function 

is required that, when minimized, results in the same solution as the matrix equation 

Ax = b. Here A is assumed to be symmetric positive definite. The minimization of 

the function 

(j){x) = ^âf^Ax — x^h (4.22) 

is the equation 

Ax = b 

nn 
where x is defined as the transpose of x. The gradient at a point .vp is defined as 

S7(l){xp) = Axp -  h. 

The function (j> decreases fastest in the — V?^ direction. At a point p this defines the 

residual 



www.manaraa.com

59 

rp = b — Axp. 

A new direction is now taken orthogonal to the previous residual direction such that 

(l>{xp + afp) < <i){xp). 

An a is chosen such that <j>{xp + ar'p) is minimized. 

d(f> -^T A" , -Ta- -TT 
— = Tp Axp + arp Arp -  Vp h 

gives the value 

•>p Aj-p 

which minimizes the function ^ along the path of the residual r. The steepest descent 

method becomes very inefficient for functions that are elliptic in shape with a high 

aspect ratio. 

A more efficient method can be obtained by making the search directions more 

general. Again the function in Eq.(4.22) is minimized. Here the minimization will be 

required along the general search direction z. So the function to be minimized is 

<l){x + ciz) = + az)^ A{x + az) — (.r + az)^b 

resulting in the quantity 



www.manaraa.com

60 

The subscript k refers to the current vector path. An appropriate vector z must now 

be chosen. 

The conjugate gradient method is used to solve the matrix equation A.t = H ])y 

choosing the vector such that it is close to the k— 1 residual vector and is conjugate 

to all previous vectors, Z2) ••••%—l- The zj, vector is obtained by solving a least 

squares problem. The result is that 

h = 4-1 + h.h-i 

where 

P k -  A -

This is used to iteratively determine the solution x by 

4 = %&-l + ̂ kh 

where 

-T -

This is the essential algorithm for the conjugate gradient method. 

The conjugate gradient method was developed for a symmetric positive definite 

matrix. The matrix resulting from the discretized flow equations, in general, does 

not necessarily possess either of these properties. Howe\'er. a matrix can be made 

symmetric positive definite by simply multiplying by its transpose. So this changes 

the problem from 

A;? = b 



www.manaraa.com

61 

to 

A^Ax = A^b. 

The multipHcation A^A can be computationally very expensive when A is large. A 

consequence of this multiplication is that the condition number of the original matrix 

is squared. This results in a considerably slower convergence rate. 

The sparse matrix solvers from SITRSOL used in the present work were conju­

gate gradient like methods. These methods relax the need for t he matrix A to be 

symmetric positive definite. Differences in these methods were described in Saad and 

Schultz [37] and Wigton et al. [39]. The generalized minimal residual method seemed 

to be the most efficient method when the requirements of storage and ojjeration count 

in reaching a solution were considered. 

A preconditioning matrix can be used to accelerate the solution convergence 

rate of the conjugate gradient method described above. In general, a preconditioning 

matrix P should approximate A~^. Basically P should drive the condition number 

of the product PA toward the ideal value of one. This clusters the eigen\'alues of the 

product, and results in the preconditioned matrix ecfuation 

PAx = Fb. 

Several preconditioners are available to the user of SITRSOL. In the current work 

the incomplete LU preconditioner was found to be the most efFective. The L and 

U refer to lower and upper triangular matrices respectively. These are incomplete 

in the ense that they do not represent the true LU decomposition of the matrix A. 

The form of these matrices retain the sparseness of the original A matrix. 



www.manaraa.com

62 

The iterative solver SITRSOL was used on one of the test cases to be shown in 

the results section and its effectiveness was compared with that of the point block 

Gauss-Seidel method. The conclusions shown in this work are provisional. More 

experience needs to be obtained to make a true evaluation of the various solvers and 

preconditioners. 

The solution of Eq. (4.10) using a point block Gauss-Seidel method suffers from 

recurrence. The penalty is seen in vectorization. This recurrence can be eliminated 

with a minimum effect on the solution convergence rate by using a coloring scheme. 

The idea comes from a problem which arose in graph theory. A t heorem states that 

a map can be colored with only four colors such that no two regions of the same 

color share a border. The conjecture was proven through exhaustive computation 

by Appel and Haken [33] in 1976. This theorem was implemented by first coloring 

the unstructured grid according to the theorem and storing all fell numbers of given 

color in an integer array. The scheme was most efficient when the numlier of cells in 

each color integer array was about equal. 

The actual coloring in the present application was done exhaustively. First in the 

order of blue, green, red, and yellow every cell was visited with a level 2 restriction 

on neighboring cells of the same color. The grid cells were initially set as uncolored. 

A cell was colored blue if both the level 1 and level 2 cells surrounding that cell were 

all uncolored. If a cell was already colored blue at level 2 or level 1. that particular 

cell was left uncolored and the search continued until all cells in the computational 

domain were visited. Then the cells were again queried for the color green, .'\gain a 

cell was only colored green if the level 1 and level 2 cells did not cont ain a green cell. 

However a neighboring blue cell was acceptable. This search continued through all 



www.manaraa.com

63 

four colors. Then the color order was reversed and a level 1 restriction was placed 

on the cell color. Here only the level 1 cells were checked for a like color. The cell 

numbers of the same color were then stored in four integer arrays. The effect of the 

color reversal was to equalize the length of the arrays for vectorization. Each cell was 

then checked to make certain that it did not border a cell with the same color. This 

gave a color map that was then used as input to the flow code. The Gauss-Seidel 

algorithm was then written to contain four loops corresponding to the four colors of 

the colored grid. Each single colored loop contained no level 1 cell recurrence, so it 

was vectorized. On a typical problem in the present study, the solution time of the 

algebraic system(the Gauss-Seidel subroutine) was reduced Ijy a factor of 7.6 times 

by using this four color partitioning. Recurrence is still present but only through the 

level 2 cells, illustrated in Fig. 4.1, required in the viscous terms. The result is that 

the quantities in the level 2 cells are lagged from the previous iteration time step. 

However, this does not seem to effect the convergence rate. 



www.manaraa.com

64 

5. RESULTS 

The results presented in this chapter will be used to demonstrate two conclusions. 

The initial results will show the validity of the code. And later results will indicate the 

versatility of the unstructured grid over the structured grid formulation. C'omparisons 

will be made with data available from other investigators. 

5.1 Bump on Wall 

Inviscid flow over a bump in a channel was computed at t wo values of Mach 

number. A Mach number of 0.5 was used for the first test case. Figure 5.1 shows 

Mach number contours. The flow was subsonic so the inviscid flow was symmetric 

about the middle of the bump. This could be seen more clearly when the upper and 

lower wall Mach number distributions were plotted. The result s of this subsonic case 

compared well with those reported by Ni, [40]. 

A second test case was computed at a Mach number of 0.675 at the inlet. Here 

the flow was transonic over the bump. The grid used for this lost case can be seen 

in Fig. 5.3. A supersonic bubble was formed on the bump. Fig. 5.4. The location 

of the shock was shown clearly in the plot of upper and lower wall Mach number 

distributions. Fig. 5.5. The location of the shock compared well with the results of 

Ni, [40] as well as that of Chima et al, [41]. The sonic line that impinged on the aft 



www.manaraa.com

65 

Figure 5.1: Constant Mach number contours for flow over a symmetrical bump in 
a channel, = 0.5 



www.manaraa.com

66 

0.70 
0.60 
0.50 
0.40 

• • 

» « 

0.0 0.5 1.0 1.5 2.0 2.5 

Figure 5.2: Upper and lower wall Mach number distribution 

3.0 



www.manaraa.com

67 

side of the bump was at a distance of 72 percent of the chord length from the head 

of the bump in the above cases. The present case locates the sonic line at 73 percent 

of the chord length. 

These inviscid test cases required the addition of artificial dissipation. For the 

subsonic case, a fourth difference was added to prevent the odd-even decoupling of 

the solution seen in central difference schemes. The transonic case also required 

the additional second difference to prevent oscillations from occurring about the 

discontinuity. In both cases the dissipation model was similar to that of .Jameson et 

al. [3]. Later Jameson and Mavriplis [12] implemented this type of dissipation model 

for an explicit unstructured grid flow solver. 

5.2 Developing Channel Flow 

Developing flow in a channel was used to validate the code tor \'iscous flows. It 

also served the purpose of testing the preconditioning used for computing low Mach 

number flows. Comparisons were made between the Gauss-Seidel method and the 

solver SITRSOL for solving the sparse matrix equation. 

The code was validated on four developing channel flow test cases. A low inlet 

Mach number flow of 0.05 was used to compute flows at Reynolds numbers of 1, 20, 

150, and 1500 based on the inlet uniform velocity, density, and full channel height. 

Because the inlet Mach number was held constant, the channel height was varied to 

obtain the appropriate Reynolds number. Unstructured grids of 1114.1969,4800, and 

4800 cells were used for the Reynolds number flows of 1, 20, 150, and 1500 respectively. 

Uniform flow enters the channel with a nondimensional uniform velocity of one and 

accelerates to a nondimensional centerline velocity of 1.5. In order to compare with 



www.manaraa.com

68 

Figure 5.3: Computational grid for the symmetrical bump in a channel test case. 
= 0.675 



www.manaraa.com

69 

Figure 5.4: Constant Mach number contours for flow over a symmetrical bump in 
a channel, = 0.675 



www.manaraa.com

70 

1 . 6  r  

1 . 2  -

0.8 - . 
0.4 L_i 

0.0 0^5 1 ^ 1.5 2X3 2L5 3.0 

Figure 5.5: Upper and lower wall Mach number distribution 

# # * * # *  



www.manaraa.com

71 

published results for incompressible flows, it was necessary to make a correction to the 

centerline velocity at the low Reynolds numbers due to the larger density variation 

from the inlet to the exit of the channel. Figure 5.6 shows the centerline velocity of 

the channel flow at various Reynolds numbers. These results were compared with 

other computations by Tenpas and Fletcher [42], Morihara and Cheng [43], and 

Chilukuri and Fletcher [44]. At a Reynolds number of 20 the centerline velocity of 

the current study slightly under predicted the centerline velocities obtained by the 

other investigators near the exit of the channel. At a Reynolds number of 1500, the 

results of the present study show a more rapid acceleration of the flow than indicated 

by the solution of the partially parabolized Navier-Stokes equations. 

Typical convergence histories for the code are shown in Fig. 5.7. The convergence 

criteria was based on the residual of the continuity equation in delta form which 

should approach machine zero as the solution goes to a steady state. The solution 

of the matrix equation was done by the block Gauss-Seidel method. In general, 

the solution converged at nearly the same rate over a wide range of Mach numbers 

holding the Reynolds number equal to 20 for the four flow test cases. This illustrates 

the benefits of the preconditioning. Without preconditioning, it was necessary to run 

the code at a much smaller time step thus decreasing the rate of convergence. At 

Mach numbers lower than 0.1 the code without preconditioning did not converge. 

The sparse matrix solver SITRSOL was used for comparison with the Gauss-

Seidel method. The convergence history for three different conjugate gradient like 

methods with the ILU used as a preconditioner is shown in Fig. 5.8. The Gauss-

Seidel method without the coloring algorithm took 13.5 minutes on the Cray YMF. 

The same computation with a color map supplied for vectorization of the Gauss-Seidel 



www.manaraa.com

72 

Present Results 
Tenpas and Fletcher 
Morihara and Cheng 
Chilukuri and Fletcher 

Rej, = 1500 

I I I I I 

10-3 10-2 10-1 

X/(Re h) 

10° 

Figure 5.6: Centerline velocity profiles for developing flow in a channel at 
= 0.05 with Rejj^ = 1,20,150,1500 



www.manaraa.com

73 

M=.l 

M=.05 

M=.005 

M=.0005 

0 

- 2  

- 4  

- 5  

6 

0 1000 2000 
Iteration Count 

Figure 5.7: Convergence history for developing channel flow over a range of Mach 
numbers at i?e^ = 20 using the block Gauss-Seidel solver 



www.manaraa.com

74 

algorithm gave a speedup factor of 7.6 over the standard Gauss-Seidel matrix solver. 

The overall computer time was reduced to 11.4 minutes, or a speed up of 15.5 percent. 

This suggests that more attention should be given to the vectorization of other parts 

of the flow code. The coloring scheme did not have much effect on the convergence 

history of this viscous calculation. The same grid was used to make comparisons 

with SITRSOL. The hi-conjugate gradient method took 9.3 minutes of computer 

time to reach about the same level of convergence as the Gauss-Seidel method. The 

generalized conjugate gradient residual method required 10.23 minutes of computer 

time. About the same level of convergence was obtained by the generalized minimum 

residual method in 5.5 minutes. 

5.3 Sudden Expansion 

The previous test cases could have easily been computed using a structured grid 

approach. The sudden expansion test case demonstrates the capability of the un­

structured grid generation and its ability to obtain a grid in a domain that would 

otherwise need a patched or masked grid to work for a structured flow code. The re­

sults from this computation were compared with the experimental results obtained by 

Durst et. al. [45]. They noted that though at lower Reynolds numbers the flow was 

symmetric about the centerline of the expansion, there were tliree-dimensional effects 

near the separated regions. A plane symmetric sudden expansion with a downstream 

channel height to step height ratio of 3:1 was computed. The Reynolds number for 

this flow was 56 based on the upstream channel height and the centerline upstream 

velocity. A fully developed parabolic profile was prescribed at the inlet which was 

located one step height upstream of the expansion. The Reynolds number was com-



www.manaraa.com

75 

Bi-conjugate gradient with ILU 
_ _ Generalized minimum residual with ILU 
. Generalized conjugate gradient residual 

with ILU 

- 2  

-3  

D) —4 

v\ 

n\ 
\ \ 

-7  

4  8  12  16  20  

Iteration Count 

Figure 5.8: Convergence history of developing flow in a channel. /?£/; = 20 com­
puted with sparse matrix solver 



www.manaraa.com

76 

puted at a streamwise location 0.25 step heights upstream of the expansion. It was 

interesting to note that the profile at this location was already anticipating the ex­

pansion corner. The flow near the wall begins to accelerate; and to conserve mass, the 

centerline velocity decreases. The flow separates at the step, reattaches downstream, 

and returns to a fully developed profile about ten step heights from the expansion. 

Figure 5.9 is a velocity vector plot of the recirculating region. The streamwise veloc­

ity component at six specific channel locations are shown in Fig. 5.10. Comparisons 

were made with the laser anemometer experimental data presented by Durst et al. 

[45]. The centerline velocity distribution was compared with the laser anemometer 

data and with the viscous-inviscid interaction computational method of Kwon et al. 

[46] and is shown in Fig. 5.11. The predicted centerline velocity appears larger than 

the experimental values downstream, but the correct value of one-third the upstream 

fully developed centerline velocity was obtained in the present calculation. 

5.4 Periodic Tandem Circular Cylinders in Cross Flow 

The flow was computed over a cascade of tandem circular cylinders. This com­

putation should be of practical interest in that geometries of this sort are encountered 

when modeling flow through heat exchangers. These tube heal exchangers can be 

found in automobile radiators, room heaters and gas and air heaters. With the un­

structured grid formulation, it was easier to generate a computational grid about 

in-line as well as staggered cascades of tubes. Some of the geometric quantities that 

affect the flow characteristics of the heat exchanger are the size and shape of the 

tubes as well as their vertical and horizontal spacing. This type of parametric study 

is ideal for the unstructured grid formulation. 



www.manaraa.com

77 

Figure 5.9: Symmetric sudden expansion. Rej^ = 56 



www.manaraa.com

78 

o 
ZD 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

Present predictions 
«OûXJy Data Durst et al. 

x/h 
-0.25 

o 1.50 
A 2.50 
O 3.50 
• 5.00 
w 10.00 

-1 .0  -0.5 0.0 0.5 

(y-YcJ/ycL 

1.0  

Figure 5.10: Velocity profiles for a laminar flow in a channel witli a 3:1 .symmetric 
sudden expansion, Rej^ = 56 



www.manaraa.com

79 

Present predictions 

Kwon et al. 

Data Durst et al. 0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

I 

0.0 0.2 0.4 0.6 0.8 1.0 
(X-Xs)/Uf 

Figure 5.11: Centerline velocity distribution for a laminar flow in a channel with a 
3:1 symmetric sudden expansion, Rej^ = 56 



www.manaraa.com

80 

The model problems presented here were compared with the incompressible nu­

merical results of Gordon [47]. Uniform flow conditions were prescribed perpendicular 

to the cascade upstream of the first bank of tubes. Periodic boundary conditions were 

imposed at the upper and lower geometric boundaries to simulate an infinite number 

of parallel rows. The tubes in this case were in-line. An upstream Mach of 0.05 was 

used for both computed test cases. Both cases were computed on the same geometry. 

The geometry used in both test cases and the grid used for the second test case is 

shown in Fig. 5.12. 

The first test case was computed at a Reynolds number of 1.0 based on the 

upstream conditions and cylinder radius. The velocity vectors are shown in Fig. 5.13 

and compare well with the streamlines computed by Gordon [47]. .^t this Reynolds 

number the flow was nearly symmetric about both cylinders indicating that there 

was minimal influence of one bank of cylinders on the other. 

The second test case was computed at a Reynolds number of 20.0 based on the 

same conditions as the test case above. Here the flow separates behind both cylinder 

banks. An enlargement of the velocity vectors near the cylinders is shown in Fig. 

5.14 and the length of the separated regions behind both of the cylinders compares 

well with those computed by Gordon [47]. As noted by Gordon [47], the length of 

the separation behind the second bank of tubes is slightly smaller than that behind 

the first bank. The first set of cylinders accelerates the flow in the freest ream so the 

slower wake flow impacts the second set of cylinders. The flow was symmetric about 

an imaginary horizontal line that passed through the centers of the cylinders. There 

does not seem to be any difference in the angular location of the actual separation 

point on either cylinder. 



www.manaraa.com

81 

Figure 5.12: Grid about periodic tandem circular cylinders 



www.manaraa.com

82 

— Streamlines, Gordon 
^ Present Results 

Figure 5.13; Periodic tandem circular cylinders in cross How. Ecf = 1 



www.manaraa.com

83 

— Streamlines, Gordon 
Present Results 

Figure 5.14; Periodic tandem circular cylinders in cross flow, Rtr = 20 



www.manaraa.com

84 

5.5 Four Port Valve 

The final results are presented to show the versatility of applying boundary con­

ditions when using an unstructured grid flow solver. The geometry represents a two-

dimensional valve with four ports where inlet or outlet flow boundary conditions can 

be specified. The grid used for this test case was shown in Fig. 3.12. A reference was 

made to such a flow geometry in an article by Ackert [48]. The actual flow conditions 

were not given. Here the flow was computed at two Reynolds numbers. Fluid enters 

through a channel on the left, enters the circular can ity, and exits through a channel 

at the bottom. For both test cases fully developed conditions were prescribed at the 

inlet. The flow redevelops along the open channel. Both test cases were computed 

with an inlet Mach number of 0.05. An interesting aspect of the geometry was that 

the closed valve ports acted as driven cavities. The unstructured grid formulation 

allows the application of exit boundary conditions at any or all oF the three remaining 

ports. This type of valve geometry can be found in an application like fluid networks. 

Fluid flow was first simulated in the valve geometry at a Reynolds number of 

10 based on inlet conditions and channel height. The velocity \ectors of this steady 

state flow are shown in Fig. 5.15. Here the fluid near the wall of the inlet channel 

was accelerated as the corner of the cavity was anticipated. A clockwise rotation of 

the fluid was followed through the circular volume. The fluid in the closed cavity 

ports was driven in a counterclockwise rotation. The band of fluid then enters the 

open lower exit channel and again becomes fully dev eloped. 

Next the same valve geometry was used to simulate the fluid flow at a Reynolds 

number of 50 based on inlet conditions and channel height. The velocity vectors of 

this computation are shown in Fig. 5.16. Again a fully developed velocity profile was 



www.manaraa.com

85 

specified at the inlet to the channel. The velocity of the fluid near the wall accelerates 

as it approaches the entrance to the circular chamber. Contrary to the previous 

case, the banded fluid actually drove a large volume of fluid in a counterclockwise 

direction. This had the effect of driving the closed valve ports in an opposite rotation 

direction from that of the lower Reynolds number test case. Also, the band of fluid 

did not diffuse as much across the circular volume. In the open exit channel the fluid 

redevelops into a fully developed parabolic profile. 



www.manaraa.com

86 

K.V V vo 
vvv vv j\ 

mw-

Figure 5.15: Four port valve, Rej^ = 10 



www.manaraa.com

87 

Figure 5.16: Four port valve, Rej^ = 50 



www.manaraa.com

88 

6. CONCLUSIONS 

A two-dimensional unstructured grid implicit flow solver was described. Al­

though only internal flow problems were considered in this study, the method is 

believed to be applicable to external flows as well. 

The compressible flow equations were discretized in finite \ olume form. They 

were integrated in time by an implicit Gauss-Seidel relaxation procedure. Diagonal 

point and the diagonal block Gauss-Seidel solvers were investigated. A sparse matrix 

iterative solver, SITRSOL, was also evaluated as a way of obtaining a solution. Re­

sults were presented for inviscid flow over a channel bump at subsonic and transonic 

conditions. The subsonic case produced nearly symmetric flow over the bump as was 

observed in the results of another researcher. The location of the sonic line on the 

aft portion of the bump for the transonic case compared well with results obtained 

by several investigators. 

The main thrust of this study was the computation of viscous flows. First the 

code was verified on some standard laminar test cases. Developing flow in a channel 

was computed at several Reynolds numbers. The results compared well with available 

experimental data and with numerical results. A temporal preconditioner was used 

to enable the code to run at very low Mach numbers. Flows were computed at a Mach 

number of 0.0005 without much effect on the convergence history of the solution. The 



www.manaraa.com

89 

different solvers were tested and compared on the developing channel flow test cases. 

Then a symmetric sudden expansion test case was run to show the capability of the 

code to compute laminar separation. Also the geometry of the sudden expansion 

was much easier to resolve and the solution was more straight forward since it was 

unnecessary to do any grid patching or grid overlaying that would be required if a 

structured grid code was used. The numerical results compared well with the available 

experimental data. A geometrically more complex test case was then computed. A 

periodic cross flow over periodic tandem circular cylinders was solved numerically 

at Reynolds numbers of 1 and 20. Comparisons were made with the streamlines 

computed by another investigator. The predicted shape and size of the separation 

bubbles behind the cylinders at a Reynolds number of 20 were in good agreement. 

Finally the flows were computed in a four port valve at Reynolds numbers of 10 

and 50. This showed the versatility in imposing boundary condition offered by an 

unstructured flow code. No data were available for comparison. The solution revealed 

some very interesting flow characteristics. 

Several conclusions can be drawn from the present study. 

1. A triangular unstructured grid can be generated about very complex geometries 

where the use of a single structured grid cannot be considered in most cases. 

This gives the advantage that a single computer code can be used in a wide 

variety of flow geometry applications. However, this ad\7intage is somewhat 

dampened by the complexity of coding required for solving a system of differ­

ential equations on this unstructured grid. Details such as boundary conditions 

are more diflUcult to implement on an unstructured grid. 

2. It was found that the diagonal block Gauss-Seidel solver was more robust than 



www.manaraa.com

90 

the point diagonal Gauss-Seidel version of solver. The diagonal point solver 

seemed sensitive to initial conditions and diagonal dominance. 

3. A coloring scheme was used to take advantage of the vectorization of the implicit 

Gauss-Seidel solver. A minimum of extra storage was necessary for a significant 

reduction in computer time. The time spent in the solver was decreased by a 

factor of 7.6. It was found that the recurrence in the viscous fluxes had little 

affect on the convergence of the solution to a steady state. 

4. The use of the sparse matrix iterative solver allowed a much larger time step 

to be used than that of the Gauss-Seidel solver. However, every time step 

using the sparse matrix solver was significantly more expensive. Even so, the 

sparse solver ran at 2 to 2.5 times faster than the block Gauss-Seidel solver. 

Several different conjugate gradient like solvers were tested with the matrix 

preconditioners available with SITRSOL. Some of the preconditioners did not 

allow a solution to the equations. The incomplete LU preconditioner was found 

to be the best. The solvers all exhibited the same basic convergence rate. The 

difference in the solvers was in the time that was required to obtain the same 

convergence level. The generalized minimum residual metliod was found to be 

the fastest for the particular test case that was being computed. 

5. A temporal preconditioning was added to the flow equations to allow solutions 

at very low Mach numbers. The preconditioner was implemented such that 

both steady state and time accurate flows could be computed. Steady state 

solutions were considered in this study. Mach number flows as low as 0.0005 

were computed without degradation to the convergence rate of the solution 



www.manaraa.com

91 

procedure. Without the preconditioning, convergence was either very slow due 

to the necessity of running at a much smaller time step, or the equations could 

not be converged to a solution. Preconditioning was relatively easy to add to 

the numerical code. 

There are several topics of research in the area of unstructured grid flow solvers 

that deserve more attention. Several of the items mentioned below are being inves­

tigated by other researchers for their specific computer codes and applications. 

1. Several discretization methods need to be investigated. In t he current work the 

central difference formulation was used. Upwind methods could also be consid­

ered. This area could most expeditiously be investigated in the current code by 

implementing the upwinding through the artificial dissipat ion. This idea also 

extends to how artificial dissipation is used in conjunction with preconditioning. 

2. Grid adaptation was one of the reasons for using a triangular unstructured grid 

formulation. In the current code, the adaptation was not done automatically 

while the code was running. Instead, a grid was input to the flow code with in­

teresting areas of the flow regime already resolved. A more appropriate method 

would be to allow the flow to cause the grid to automatically adapt to regions 

of high gradients or large error. 

3. More work needs to be done on finding ways of vectorizing an implicit unstruc­

tured grid flow code. In the current formulation this seems to be especially 

important in the implementation of the boundary conditions. This may require 

the use of more computer storage. Each cell may need a small square matrix 

that triggers the appropriate boundary condition for e\ery cell edge. 



www.manaraa.com

92 

4. The parallelization of the unstructured computer code is becoming more im­

portant as three-dimensional effects in a flow field require modeling. The flow 

domain needs to be divided between several computers since the number of cells 

or grid points in the computational domain becomes too large for one computer 

to solve effectively. Many of the ideas can be tested in two dimensions to de­

termine their viability. 

5. Different sparse matrix solvers need to be investigated and compared for speed 

and stability. Another concern is how well the solver will parallelize. 

6. One version of a temporal preconditioner was investigated in the current work. 

Other preconditioners can be used to determine if they have a positive or neg­

ative effect on the convergence characteristics or speed of the scheme. 



www.manaraa.com

93 

BIBLIOGRAPHY 

[1] Steger, J., and Warming, R. F., "Flux Vector Splitting of the Inviscid Gasdynam-

ics Equations with Application to Finite-Difference Methods. " NASA TM-78605. 

1978. 

[2] MacCormack, R. W., "A Numerical Method for Solving the Equations of C'om-

pressible Viscous Flow," AIAA 81-0110, 1981. 

[3] Jameson, A., Schmidt, W., and Turkel, E., "Numerical Solution of the Eu-

ler Equations by Finite Volume Methods Using R.unge-Kiitta Time Stepping 

Schemes," AIAA 81-1259, 1981. 

[4] MacCormack, R. W., "Current Status of Numerical Solutions of the Navier-

Stokes Equations," AIAA 85-0032, 1985. 

[5] Jameson, A., "Successes and Challenges in Computational .Aerodynamics," 

AIAA 87-1184, 1987. 

[6] Steger, J. L., Dougherty, F. C., Benek, J. A., "A Chimera Grid Scheme," Ad­

vances in Grid Generation, ASME FED-5, pp. 59-69. 1983. 

[7] Rai, M. M., "A Relaxation Approach to Patched-Grid Calculations with the 

Euler Equations," AIAA 85-0295, 1985. 



www.manaraa.com

94 

[8] Sibson, R., "Locally equiangular triangulations," The Computer Journal, 21, 

No. 3, pp. 243-245, 1978. 

[9] Peraire, J., Vahdati, M., Morgan, K, and Zienkiewicz, 0. C.. "Adaptive Remesh-

ing for Compressible Flow Computations," Journal of Comindational Physics, 

72, No. 2, pp. 449-466, 1987. 

[10] Holmes, D.G., and Snyder, D. D., "The Generation of Unstructured Triangular 

Meshes Using Delaunay Triangulation," Numerical Grid Generation in Compu­

tational Fluid Mechanics '88, Pineridge Press, Miami, 1988. pp. 643-652. 

[11] Holmes, D.G., and Connel, S. D., "Solution of the 2D Navier-Stokes Equations 

on Unstructured Adaptive Grids," AIAA 89-1932. 1989. 

[12] Jameson, A., Mavriplis, D., "Finite Volume Solution of the Two Dimensional 

Euler Equations on a Regular Triangular Mesh." .AIAA 85-0435. 1985. 

[13] Lindc[uist, D. R., and Giles, M. B, "A Comparison of Numerical Schemes ou 

Triangular and Quadrilateral Meshes," Procetdings of llth International Con­

ference on Numerical Methods in Fluid Dynamics. Springer-Verlag, New York, 

1988. 

[14] Mavriplis, D., Jameson, A., Martinelli, L., "Multigrid Solution of the Navier-

Stokes Equations on Triangular Meshes," AIAA 89-0120, 1989. 

[15] Venkatakrishnan, V., Bart h, T. J., "Application of Direct Solvers to Un­

structured Meshes for the Euler and Navier-Stokes Equations Using Upwind 

Schemes," AIAA 89-0364, 1989. 



www.manaraa.com

[16] Barth, T. J., Jespersen, D. C., "The Design and Application of Upwind Schemes 

on Unstructured Meshes," AIAA 89-0366, 1989. 

[17] Whitaker, D. L., and Grossman, B., "Two-Dimensional Euler Computations on 

a Triangular Mesh Using an Upwind Finite-Volume Scheme," AIAA 89-0470, 

1989. 

[18] Caruso, S., "Development of an Unstructured Mesh/Navier-Stokes Method for 

Aerodynamics of Aircraft with Ice Accretions," AIAA 90-0758. 1990. 

[19] Batina, J. T., "Development of Unstructured Grid Methods for Steady and 

Unsteady Aerodynamic Analysis," Presented at the 17th Clongress of the Inter­

national Council of the Aeronautical Sciences, Stockholm, Sweden. 1990. 

[20] Hase, J. E., Anderson, D. A., Parpia, I., "A Delaunay Triangulation Method 

and Euler Solver for Bodies in Relative Motion." AIAA 91-1590. 1991. 

[21] Usab, W. J., Jiang, Y. T., "Development of a Solution Adaptive Unstructured 

Scheme for Quasi-Three-Dimensional Inviscid Flows Through .Advanced Turbo-

machinery Cascades," AIAA 91-0132, 1991. 

[22] Barth, R. J., "Numerical Aspects of Computing Viscous High Reynolds Number 

Flows on Unstructured Meshes," AIAA 91-0721, 1991. 

[23] Venkatakrishnan, V., Mavriplis, D. J., "Implicit Solvers for Unstructured 

Meshes," ICASE Report No. 91-40, 1991. 

[24] Baker, T. J., "Unstructured Meshes and Surface Fidelity for Complex Shapes," 

AIAA 91-1591, 1991. 



www.manaraa.com

96 

[25] Woodard, P. R., Batina, J. T., "Quality Assessment of Two- and Three-

Dimensional Unstructured Meshes and Validation of an Upwind Euler Flow 

Solver," AIAA 92-0444, 1992. 

[26] Batina, J. T., "A Fast Implicit Upwind Solution Algorithm for Three-Dimen-

sional Unstructured Dynamic Meshes," AIAA 92-0447, 1992. 

[27] Das, R., Mavriplis, D. J., Saltz, J., Gupta, S., Ponnusamy, R.., "The Design and 

Implementation of a Parallel Unstructured Euler Solver using Software Primi­

tives," ICASE Report No. 92-12, 1992. 

[28] Choi, D., Merkel, C. L., "Application of Time-Iterative Schemes to Incompress­

ible Flows," AIAA 84-1638, 1984. 

[29] Turkel, E, "Preconditioned Methods for Solving the Incompro\ssible and Low 

Speed Compressible Equations," Journal of Computalional Physics, 72. pp. 277-

298, 1987. 

[30] Feng, J., Merkel, C. L., "Evaluation of Preconditioning Methods for Time-

Marching Systems," AIAA 90-0016, 1990. 

[31] Withington, J. P., Shuen, J. S., Yang, V., "A Time .Accurate, Implicit Method 

for Chemically Reacting Flows at All Mach Numbers." .ALA.A 91-0581, 1991. 

[32] Choi, Y., Merkel, C. L., "Time-Derivative Preconditioning for Viscous Flows." 

AIAA 91-1652, 1991. 

[33] Appel,K and Haken, W, "Every planer map is 4-colorable." Bull. Am. Math. 

Soc. 82, pp. 711-712, 1976. 



www.manaraa.com

97 

[34] Eisenstadt, S. C., Gursky, M. C., Schultz, M. H., Sherman, A. II.. "Yale Sparse 

Matrix Package; II The Nonsymmetric Codes," Research Report No. 114, Yale 

University, New Haven, 1977. 

[35] Cray Research, Inc., "Volume 3: UNICOS Math and Scientific Library Reference 

Manual," SR-2081 6.0, pp. 227-243, 1991. 

[36] Golub, G. H., Van Loan, C. F., Matrix Computations, The John Hopkins Uni­

versity Press, Baltimore, 1989. 

[37] Saad, Y., Schultz, M. H., "GMRES: A Generalized Minimal Residual .Algorithm 

for Solving Nonsymmetric Linear Systems," SIAM Journal on Scientific and 

Statistical Computing, 7, pp. 856-869, 1986. 

[38] Press W. H., Flannery, B. P., Teukolsky, S. A., Vetteiiing. W. T.. Numerical 

Recipes, Cambridge University Press, Cambridge, 1989. 

[39] Wigton, L. B., Yu, N. J., and Young, D. P., "GMRES Acceleration of Compu­

tational Fluid Dynamics Codes," AIAA 85-1494, 1985. 

[40] Ni, R., "A Multi-Grid Scheme for Solving the Euler Ecjuations." .AI.A.A 81-1025. 

1981. 

[41] Chima, R. V., Turkel, E., SchafFer, S., "Comparison of Three Explicit Multigrid 

Methods for the Euler and Navier-Stokes Ec|uations,'" .AI.AA 87-0602, 1987. 

[42] Tenpas, P. W. and Pletcher, R. H., "Solution of the Navier-Stokes equations 

for subsonic flows using a coupled space-marching method," .MAA 87-1173-cp. 

1987. 



www.manaraa.com

[43] Morihara, H. and Cheng, R. T., "Numerical solution of the viscous flow in the 

entrance region of parallel plates," Journal of Computatioval Physics, 11, No. 

4, pp. 550-572, 1973. 

[44] Chilukuri, R. and Fletcher, R. H., "Numerical solution to the partially parabo-

lized Navier-Stokes equations for developing flow in a channel," Numerical Heat 

Transfer, 3, No. 2, pp. 169-187, 1980. 

[45] Durst, F., Melling, A., Whitelaw, J. H., "Low Reynolds number flow over a 

plane symmetric sudden expansion," Journal of Fluid Mechanics. 64. pp. 441-

428, 1974. 

[46] Kwon, 0. K., Fletcher, R. H., and Lewis, J. P., "'Prediction of sudden expansion 

flows using the boundary-layer equations," Trans. ASME. J. Fluids Engineering, 

106, pp. 285-291, 1984. 

[47] Gordon, D., "Numerical Calculations on Viscous Flow Fields through Cylinder 

Arrays," Computers and Fluids, 6, pp. 1-13, 1978. 

[48] Ackeret, J., "Aspects of Internal Flow," Proceedings of the Symposium on the 

Fluid Mechanics of Internal Flows, General Motors Research Laboratories, War­

ren, MI, 1965. 



www.manaraa.com

99 

APPENDIX A. LOCATING LEVEL 2 CELLS 

To compute the viscous fluxes it was necessary to determine the cell numbers and 

orientation locally at level 2. A general description of how these cells were identified 

and some details of the algorithm will be presented. 

Figure A.l shows cell A  and its level 1(B, C, D )  and level 2 { E .  F ,  G .  H ,  1 ,  J )  

cell neighbors. The subscripts of the cell labels refer to the numbers associated with 

the cells. In this case the cells A through J are numbered 1 through 10. respectively. 

The connectivity matrix described at the end of the chapter on grid generation gives 

the numbers associated with the level 1 cells of cell .4. The level 2 cell numbers can 

also be easily obtained by shifting to the adjacent neighbors ol' cell A and finding 

their level 1 cell numbers. Note that the cell number associated with cell A will be 

one of those numbers. This can most easily be explained by referring to Fig. .A.l. 

First, cell A has a cell number of 1 and its level 1 cells are given by the connectivity 

matrix as 2, 3, and 4 for cells B, C, and D respectively. Next the level 2 cells need 

to be determined. So, by shifting to cell B its level 1 cells reveal I he level 2 cells that 

are adjacent to cell B. In this case cell B has cells 5. 6. and 1 as its level 1 cells. The 

real problem is not finding the cell numbers of the level 2 cells but instead how these 

cells can be oriented such that they can be traversed in a counterclockwise manner 

when doing a numerical integration. This orientation procedure should result in cell 



www.manaraa.com

100 

Figure A.l: Level 1 and level 2 cells about cell /I with subscript cell numbers 



www.manaraa.com

101 

numbers that are in the order E ,  F ,  G ,  H ,  I  and J .  Note that the level 1 cells are 

always numbered locally in a counterclockwise manner. This reduces the number of 

permutations required to obtain the correct orientation. A permutation matrix is 

used along with the available connectivity matrix to accomplish the ordering. 

An algorithm can be written to accomplish the above local ordering of cells. 

First the permutation matrix is defined as 

nperm{k, I) = 

1 2 3 

2 3 1 

3 1 2 

The three faces of cell A(cell number i in this example) are determined from the 

connectivity matrix as 

n f l  =  N C E L L { l , i )  

n f 2  =  N C E L L { 2 , i )  

n f S  =  N C E L L ( Z , i ) .  

It is now necessary to find the cell numbers for B, C, and D by 

icb = NFACE{l,nfl) + NFAC E(2. nf l ) - i 

i c c  =  N F A C E { l , n f 2 )  +  N F A C E { 2 ,  n f 2 )  -  I  

i c d  =  N F A C E { l , n f 3 )  +  N F A C E ( 2 . n f S )  -  I .  

This algorithm simply looks at the cell numbers on both sides of a given face, adds 

the cell numbers together, and subtracts the cell number associated with cell /I. This 

gives the level 1 cell number across a given face adjacent to cell A. This is done for 

all three faces of each local triangular cell. Next, the faces of cell B are obtained 

from its local connectivity matrix as 



www.manaraa.com

102 

n f s l  =  N C E L L { \ , i c b )  

n f s 2  =  N C E L L { 2 , i c b )  

n f s Z  =  N C E L L { ' 3 , i c b ) .  

Now the cells that surround cell b are temporarily stored in the order in which they 

are oriented with respect to cell B. This is done by setting 

ics(l) = N F A C E { l , n f s l )  +  N F A C E { 2 , n f s l )  -  i c h  

ics{2) = NFACE{l,nfs2) + NFACEi2. nfs2) - ich 

ics(3) = NFACE[\,nfs'i) + N F AC E{2,nf s^i) - ich. 

This is the same type of coding that gave the level 1 cells for .4 shown above. Now 

the hyperbolic cosine and integer conversion functions are used I o locate cell E and 

F with respect to cell A. The permutation matrix defined abow is used to give the 

appropriate orientation of cell E and F. So, 

n f a  =  I N T { l . l C O S H { F L O A T { i c s { l )  -  i c a ) ) )  

n f b  =  I N T { l . / C 0 S H { F L 0 A T { i c s i 2 )  -  i c a ) ) )  

n f c  =  I N T { l . / C O S H { F L O A T { i c s ( Z )  -  i c a ) ) )  

lab = nfa + nfb * 2 + n f c  * 3 

lad = nperm(lab, 2) 

I d a  =  n p e r m [ l a b , Z ) .  

The integers n f a ,  n f b ,  and n f c  take on values of zero or one. The cell numbers for 

E and F can now be found by 

ice = ics{lad) 

i c f  =  i c s { l a b ) .  



www.manaraa.com

103 

Here ice and icf are the cell numbers of E  and F  respectively. 

The cell numbers for G, /, and J are determined in a similar fashion. These 

cell numbers can either be stored as an extended connectivity matrix or recomputed 

for every cell at every iteration. In the present study these level 1 and level 2 cell 

numbers were stored locally for each cell. The above algorithm was accessed as a 

preprocessor and the cell numbers were stored as part of the connectivity matrix.. 



www.manaraa.com

104 

APPENDIX B. CONSTRUCTING THE MATRIX EQUATION 

The matrix equation A x  = 6 was constructed using the connectivity matrix and 

the viscous flow equations written in discrete delta form. This can be most easily 

shown by looking at a typical row of the the matrix equation. Consider the cells that 

are shown in Fig. A.l. The system of equations are written in block form where the 

A matrix is given by 

kl,l] kl,2] [^1,3] Ml,4) [^1,5] [^1,6] [^1,7] l-^l.s] [^1.9] [-k.io] •••[O]---

and the vectors are written as 



www.manaraa.com

105 

X = 

[^l] 

[ ^ 2 ]  

[^^3] 

[ x ^ ]  

ks] 

ke] 

k?] 

kio] 

b = 

i h ]  

[bo] 

[%] 

[64] 

[65] 

[%] 

[67] 

[69] 

I h o ]  

['';?] 

respectively. The subscript n refers to the total number of triangular control volumes 

in the computational domain. The vector x contains the unknowns AP. Au. At», and 

AT for each block of the matrix A. The vector b is the column of known quantities 

from the discretization of the equations in delta form. 

As an example, the x-momentum equation will be used to show how the co­

efficients of the second row of the block matrices are computed. First the inviscid 

terms will be considered and then the viscous terms descrilsed earlier in the section 

on discretization will be added. 

Only the level 1 cells are used to compute the inviscid terms. These are cells B 

through D or cell numbers 2 through 4 respectively. By referring to Eqs. (2.7, 4.3, 

and 4.9) the x-momentum equation can be written in discrete foi in as 



www.manaraa.com

106 

a 
At 

^ A ^ A Pi - A Ti 
[Tl Tl Tl' 

(2P^ 

[v n A «1 + A «2^ A yi2 

+ 

+ 

^2^^ A ui + A «3^ A yi3 + A «i + A «4 ) A î/14 

A y i g + f ^ A f i + ^ A f g j  A ! / i 3  

+ f ^ A Pi + ̂  A P4 I A yi4 

f W  
V î^i 

^3«3' 
T" ̂ ^1 + ^^3 I A 2/13 

( ^ A r i  +  ̂ A r , ) A , i 2  

+P(APi + APg) A 2/12 + -R(APi + AP3) A 1/13 + P(APi + APj ) A1/14 

- A «1 + A «2 j A .T12 -

-  A « i  +  A  « 4 ^  A  . Ï 1 4  -

- A ui + A 1)3^ A a;i3 -

- / " l ^ A P i  +  ™ A P 2 l A . . i 2  

(^ ̂ "1 + ̂  ̂ "3 J A -'13 

(A t>i + A t.'4 ) A .Ï14 

\ Tl ^ ' 72 

^ " l ^ A P i + ! ^ A P 4 ) A . i 4  +  

V Tl ^ T'4 

( ï ^ A P , + œ Î A P : , | A a . i 3  

+ 

+ 

\ Tl -- ' T4 

( ^ A T i + ^ A T , ) A . , 3  

( -Pi" in 
V ri2 

A T i  +  ̂ ^ A r 4 j  A . r , 4  = E.H.S., 

where the subscripts 1 through 4 and 12 through 14 refer to the cell number and cell 

edges respectively. The variable 5'i is the area of cell number 1. Tlie R.H.S. is the 

right-hand side of the x-momentum equation and is given by 



www.manaraa.com

107 

+i2(Pl + P2) A yi2 + R{Pi  + P3) A yi^  + R{Pi + P^) A (7^4 

+ (û|p + te) A .ns + (û|p + A .,3 

+ (Û^ + Û^)A..14], 

where the ' terms are quantities from the previous time level. The coefficients 

multiplying similar delta unknown quantities are collected and written in matrix 

form. The geometric factors 

Aa;i2 + Arc^g + A.x-^4 

and 

Aî/12 + AÎ/13 + AÎ/14 

are identically zero. 

The inviscid coefficients of the delta quantities of the x-momentum equation 

are then stored in the A matrix as the second row of the fiisl block row in this 

implementation. The viscous terms make contributions through both the level 1 and 

level 2 cells. As with the inviscid terms described above the terms that multiply 

similar delta unknown cjuantities are collected and added to the A matrix. The 

viscous terms will require additional storage for the contribution given through cells 

5 through 10. The exception to this storage requirement is where lioundary conditions 



www.manaraa.com

108 

are imposed. The viscous terms are added to the inviscid R.H.S. of the x-momentum 

equation as 

R.H.S. = R.H.S. - ^ 
2Re 3 ("i [(«2 + W5) A Î/25 + (ît2 + i'6) A ;'/26 

.•^12 

+ («1 + «3) ^ 2/13 + ("1 + «4) ^ yu\ ^2/12 + ̂  [(^'1 + "2) ̂  Wl 

+ («3 + "7) ̂  2/37 + ("3 + "g) ̂  2/38 + ("1 + "4) ̂  2/14] ̂  2/13 

1 
[(î<l + 112) A yi2 + («1 + «3) A 2/13 + ("'4 + "9) A v/49 

[( t'2 + ^5) ^ '('25 + (^'2 + %) A .^26 

514 
1 9. 

+ («4 + "10) ̂  2/410] ̂  2/14 3 

.•^12 

+ (^1 + ̂3) A .ri3 + («1 + U4) A .r24] A tjio + [( i'l + ' '2) A 

+ (^3 + ̂ 7) ^ ̂ 37 + (^3 + ̂ S) ••^"38 + (^1 + ^"4) ^ -^"M] 2/13 

[(^1 + ̂2) ̂  ̂12 + ("1 + ̂3) ̂  •'^"13 + (''4 + t'o) A ;r,i(j 
^>14 

1 
+ (v4 + uio) A .T410] A 2/14 - ̂  [("2 + «5 ) ̂  •^"25 + ( "2 + "6 ) A xoq 

+ (î'I + «3) ̂  ̂ 13 + (^4 + "4) ^ •''I4] A a-12 - [("] + "2) ^ :) !2 

+ («3 + "7) ̂  ̂37 + ("3 + ̂S) ̂  ̂38 + (^'1 + "4) ̂  -('14] ̂  '13 

-TT— [{«1 + «2) ̂  ̂12 + ("1 + "3) A xŷ  + («4 + UÇj) A .iVjQ 
^14 

+ («4 + "10) ̂  ̂410] ̂  ^ [(^2 + ̂'5) ̂  2/25 + ('"2 + %) A yoQ 

+ (•"1 + ̂3) ̂  2/13 + (^1 + "4) ̂  2/14] ̂  -^U2 + ̂  [(('1 + ''2) A ,1/12 

+ (^3 + ̂7) ̂  2/37 + (^3 + ̂8) ̂  2/38 + (^1 + ('4) A ,'714] A 

+-^ [(^1 + ̂2) ̂  2/12 + (^1 + ̂3) ̂  2/13 + ("4 + eg) A 2/49 

+ {^4 + vio) A 2/410] ̂  ̂14 } • 



www.manaraa.com

109 

The subscripts 1 through 10 and 12 through 410 refer to the cell numbers and edge 

numbers, respectively. The edge number 410 is the boundary between cell 4 and cell 

10, for example. Geometric quantities are computed in a counterclockwise manner. 

The coefficients stored in the A matrix that multiply the delta quantities in 

the continuity, y-momentum, and energy equations are obtained in a similar fashion. 

The preconditioning terms are added to the diagonal blocks of the A matrix. The 

artificial dissipation is explicit and is added to the term on the right-hand side. 



www.manaraa.com

110 

APPENDIX C. GRID GENERATION COMPUTER CODE 

This computer program generates a grid based on the Delaunay triangulation cri­

teria described in the chapter on grid generation. The input parameters are described 

in the subroutine INPUT. Boundary points are read in as input in the subroutine 

BOUNDI. The computational domain is triangulated and the node point coordinates 

and cell connectivity arrays are written to output files. A four color map is also 

generated and written to a file. 

PROGRAM GRIDS 
$INCLUDE grids.common 

QPEN(UNIT=10,STATUS='FORMATTED 
0PEN(UNIT=15,STATUS='FORMATTED 
OPEN(UNIT=20,STATUS='FORMATTED 
OPEN(UNIT=31,STATUS='FORMATTED 
OPEN(UNIT=32,STATUS='FORMATTED 
OPEN(UNIT=33,STATUS='FORMATTED 
OPEN(UNIT=40,STATUS='FORMATTED 
OPEN(UNIT=45,STATUS='FORMATTED 
OPEN(UNIT=50,STATUS='FORMATTED 
OPEN(UNIT=S5,STATUS='FORMATTED 
CALL INPUT 

C INPUT BOUNDARY POINTS 
CALL BOUNDI 

IF(IRST.GE.1)THEN 
NRW=1 
CALL RESTRT(NRW) 

ELSE 
C Triangulate boundary points 

C Add points to the original boundary triangulation 
IF(MPA.GT.O) CALL ADDPT 

,FILE='grids.input') 
,FILE='gridS.bndpts') 
,FILE='grids.rst') 
,FILE='grid.plot 1') 
,FILE='grid.plot2') 
,FILE='grid.plot3') 
,FILE='facell.data') 
,FILE='node.data') 
,FILE='grid.plot') 
,FILE='color.map') 



www.manaraa.com

I l l  

Check orientation of triangle 
CALL ORIENT 

Check for duplicate cells 
CALL REMDUP 

Make certain boundary edges correspond to side A-B 
IF(NCCP.EQ.1)CALL SIDEAB 

Determine face-cell connectivity 
IF(NCCP.EQ.1)CALL FACELL 

Check for cells that have more than one face on a boundary 
IF(NCCP.EQ.l)CALL BFC 

Make four color map 
IF(NCCP.EQ.l)CALL FCM 

OUTPUT BOUNDARY GEOMETRY FOR PLOTTING 
CALL BPLDT 
CALL OUTPUT 

Output Restart file 
NRW=2 
IF(IRST.LT.2)CALL RESTRT(NRW) 

ir 

SUBROUTINE INPUT 
$INCLUDE grids.common 
C NCB = Number of Closed Bodies 
C IRE = Type of REfinement 
C NPA = Number of Points to be Added 
C IRST= Restart file? 
C NCCP= Switch diagonal of cells with 2 faces on a boundary 
C NSWB,NSWE= node solid wall begin and end 
C NEXB,NEXE= node exit begin and end 
C NINB,NINE= node inlet begin and end 
C NSYB,NSYE= node symmetry begin and end 
C NSYP = node # that is periodic with the first index # NSYB 

NAMELIST/INPUTl/NCB,IRE,NPA,IRST,NCCP 
NAMELIST/INPUT2/NSB,NEB,NIB,NYB 
READ(10,NML=INPUT1) 
READ(10,NML=INPUT2) 
DO 1 1=1,NSB 
READ(10,*)NSWB(I),NSWE(I) 

1 CONTINUE 
DO 2 1=1,NEB 
READ(10,*)NEXB(I),NEXE(I) 

2 CONTINUE 
DO 3 1=1,NIB 
READ(10,*)NINB(I),NINE(I) 

3 CONTINUE 



www.manaraa.com

112 

DO 4 1=1,NYB 
READ(10,*)NSYB(I),NSYE(I),NSYP(I) 

4 CONTINUE 

IS"™ 

SUBROUTINE BOUNDI 
$INCLUDE grids.common 

N=0 
DO 1 K=i,NGB 
READ(15,*)NPB(K) 
NPBT=NPB(K) 
print*,'Points on boundary',k,' =',npbt 

DO 1 I=1,NPBT 
N=N+1 
READ(15,*)NC0(N),XB(K,I),YB(K,I) 

' gPïîir 
print*,'Total number of initial points=',nptb 

IF(IRST.Eq.O)THEN 
NPTT=0 
DO 2 K=1,NCB 
NPBT=NPB(K)-1 
DO 2 I=1,NPBT 

NPTT=NPTT+1 
X(NPTT)=XB(K,I) 
Y(NPTT)=YB(K,I) 

2 CONTINUE 
END IF 
RETURN 
END 

SUBROUTINE TRIAN 
$INCLUDE grids.common 
C Triangulate the initial boundary nodes 

NEL=0 
DO 1 I=1,NPTB-1 
I1=NC0(I) 
I2=NC0(I+1) 
DO 1 13=1,NPTT 
IF(I3.EQ.I1.0R.I3.Eq.I2) GO TO 1 

C Determine if points lie in a straight line 
CALL LINE 
IF(IFLAGL.EQ.l) THEN 

C Check Delaunay triangulation criterion 
CALL DELAUNY 
IF(IFLAGD.Eq.l) THEN 



www.manaraa.com

113 

Store cell node point numbers 
NEL=NEL+1 
NCELL(4,NEL)=I1 
NCELL(5,NEL)=I2 
NCELL(6,NEL)=I3 
PRINT*,'The following nodes have been triangulated' 
PRINT*,'Cell',nel,II,12,13 

eSSSF 
1 CONTINUE 

RETURN 
END 

SUBROUTINE LINE 
$INCLUDE grids.common 
C Check if points are in a straight line. A, B, and G are the 
C lengths of the sides of the triangle. If the sum of two of 
C the sides is equal to the third, the triangle is flat. 

IFLAGL=1 
A=SqRT((X(Il)-X(I2))**2+(Y(Il)-Y(I2))**2) 
B=SQRT((X(I2)-X(I3))**2+(Y(I2)-Y(I3))**2) 
C=SQRT((X(I3)-X(I1))**2+(Y(I3)-Y(I1))**2) 
CK1=ABS((A+B)/C-1.0) 
CK2=ABS((B+C)/A-1.0) 
CK3=ABS((C+A)/B-1.0) 
IF(CKl.LT.1.E-5.OR.CK2.LT.1.E-5.OR.CK3.LT.1.E-5)IFLAGL=0 

liJURB 

SUBROUTINE DELAUNY 
$INCLUDE grid5.common 
C Compute distance from center of circumcircle to all other 
C points in the domain. 
C Calculate the radius of the circumcircle 

A=SQRT((X(I1)-X(I2))**2+(Y(I1)-Y(I2))**2) 
B=SQRT((X(I2)-X(I3))**2+(Y(I2)-Y(I3))**2) 
C=SQRT((X(I3)-X(I1))**2+(Y(I3)-Y(I1))**2) 
s=.5*(a+b+c) 
SS=4.*SqRT(S*(S-A)*(S-B)*(S-C)) 
rc=a*b*c/ss 

C Center of circumcircle. 
A11=X(I1)-X(I2) 
A12=Y(I1)-Y(I2) 



www.manaraa.com

114 

A21=X(I1)-X(I3) 
A22=Y(I1)-Y(I3) 
B1=.5*(X(I1)**2-X(I2)**2+Y(I1)**2-Y(I2)**2) 
B2=.5*(X(I1)**2-X(I3)**2+Y(I1)**2-Y(I3)**2) 
XC=(B1*A22-B2*A12)/(A11*A22-A21*A12) 
YC=(B2*A11-B1*A21)/(A11*A22-A21*A12) 

C Check if center of circumcircle lies within the domain of 
" ^sM^aiîKD 

IF(IFLAGC.EQ.O) THEN 

JîP" 
IFLAGD-I^^PTT 
IF(I.Eq.I1.0R.I.EQ.I2.0R.I.EQ.I3) GO TO 1 

C Check for violation of Delaunay criterion. 
RP=SQRT((XC-X(I))**2 + (YC-Y(I))**2) 

c PRINT*,'I=',i,'RC=',RC,'RP=',RP 
IF(RP,LT..98*RC)THEN 

C Point lies within circumcircle. 

JîF" 
1 CONTINUE 

RETURN 
END 

SUBROUTINE CHKD 
$INCLUDE grids.common 
C Checks to see if new point is within the domain of interest. 
C Sum of angles on inside of domain = 360. Sum of angles outside 
C domain = Q.^ 
C If lANGLE(l) = 1 and ANGLE(>1) = 0 then the new point is ok. 
C If lANGLE(l) = 0 then the new point is not ok. 
C If lANGLE(l) = 1 and ANGLE(>1) = 1 then the new point is not ok. 

RT0D=180./3.141592654 
C Initialize point type 

DO 1 K=1,NCB 
IANGLE(K)=0 

1 CONTINUE 
C Sum all angles and set the point type: 1 or 0. 

DO 2 K=1,NCB 
NPTS = NPB(K)-1 
SUM=0.0 
DO 3 1=1,NPTS 
AI=XB(K,I)-XC 
AJ=YB(K,I)-YC 



www.manaraa.com

115 

BI=XB(K,I+1)-XC 
BJ=YB(K,I+1)-YC 
AIJSQ=SqRT(AI*AI+AJ*AJ) 
BIJSQ=SQRT(BI*BI+BJ*BJ) 
ANGLE=(AI*BI+AJ*BJ)/(AIJSQ*BIJSQ) 
IF(ANGLE.GT.l.)THEN 
ElggAB=0.0 

THEAB=ACOS(ANGLE) 
ENDIF 
CROSS=AI*B^-AJ*BI 
SUM=SUM+SIGN(THEAB,CROSS) 

3 CONTINUE 

IF(ABS(SUM-360.0).LT.1.0) lANGLE(K)=1 
2 CONTINUE 

C Determine if point is in domain of interest 
IFLAGC=1 
IF(IANGLE(1).Eq.O) THEN 

JP" 
DO 4 K=2,NCB 
IF(IANGLE(K).Eq.l) THEN 

4 CONTINUE 

RETURN 
END 

SUBROUTINE ADDPT 
$INCLUDE grids.common 

NPAC=0 
1 CONTINUE 

C Determine cell number with largest aspect ratio 
IF(IRE.EQ.1)CALL ASPECT(IPA) 

C Determine cell number with largest area 
IF(IRE.EQ.2)CALL AREA(IPA) 

C Determine cell number with largest circumcircle 
IF(IRE.EQ.3)CALL CIRCUM(IPA) 

C Determine cell number with largest side ratio 
IF(IRE.EQ.4)CALL SIDE(IPA) 

C Determine cell number with largest side ratio 
IF(IRE.EQ.5)CALL EPI(IPA) 

C Increment number of points total and store coordinates of 
C new point 



www.manaraa.com

116 

NPTT=NPTT+1 
X(NPTT)=XC 
Y(NPTT)=YC 

print*,'Point number',nptt,' added in cell',ipa 
print*,'at location',xc,yc 

C Determine cells whose circumcircles include the new point 
C and delete those triangles 

CALL DELETE 
C Reconnect the remaining sides to new point 

NPAC=NPAC+1 
C Remove bogus cells from local refinement 

CALL RBC 

IF(NPAC.LT.NPA)GO TO 1 
RETURN 
END 

SUBROUTINE ASPECT(IN) 
$INCLUDE grids.common 

C-'-PLAEE^NEW^GRID POINT IN TRIANGLFWITH\AREEST 
C—ASPECT RATIO 

AR=0.0 
DO 1 1=1,NEL 
I1=NCELL(4,I) 
I2=NCELL(5,I) 
I3=NCELL(6,I) 
xi=xai) 
X2=X(I2) 
X3=X(I3) 
Y1=Y(I1) 
Y2=Y(I2) 
Y3=Y(I3) 
A=SQRT((X1-X2)**2+(Y1-Y2)**2) 
B=SqRT((X2-X3)**2+(Y2-Y3)**2) 
C=SqRT((X3-X1)**2+(Y3-Yl)**2) 
S=.5*(A+B+C) 
ARN=A*B*C/(8.*(S-A)*(S-B)*(S-C)) 
IF(ARN.GT.AR)THEN 
A11=X1-X2 

Bl=.5*(X1*X1-X2*X2+Y1*Y1-Y2*Y2) 
B2=.5*(X1*X1-X3*X3+Y1*Y1-Y3*Y3) 
XC=(B1*A22-B2*A12)/(A11*A22-A21*A12) 
YC=(B2*A11-B1*A21)/(A11*A22-A21*A12) 

C—CHECK XC AND YC TO BE WITHIN BOUNDARY LIMITS 
c if(xc.gt.2.9)go to 1 

CALL CHKD 



www.manaraa.com

117 

IF(IFLAGC.Eq.l) THEN 

JP 
1 IdntWE 

iP" 

SUBROUTINE AREA (IN) 
$INCLUDE grids.common 
C—COMPUTE AREA OF EVERY TRIANGLE AND 
C PLACE NEW GRID POINT IN TRIANGLE WITH LARGEST 
C AREA 

I1=NCELL(4,I) 
I2=NCELL(5,I) 
I3=NCELL(6,I) 
X1=X(I1) 
X2=X(I2) 
X3=X(I3) 
Y1=Y(I1) 
Y2=Y(I2) 
Y3=Y(I3) 
A=SqRT((X1-X2)**2+(Y1-Y2)**2) 
B=SQRT((X2-X3)**2+(Y2-Y3)**2) 
C=SQRT((X3-X1)**2+(Y3-Y1)**2) 
S=.5*(A+B+C) 
TAREAN=SQRT(S*(S-A)*(S-B)*(S-C)) 
IF(TAREAN.GT.TAREA)THEN 

iii 
Bl=.5*(X1*X1-X2*X2+Y1*Y1-Y2*Y2) 
B2=.5*(X1*X1-X3*X3+Y1*Y1-Y3*Y3) 
XC=(B1*A22-B2*A12)/(A11*A22-A21*A12) 
YC=(B2*A11-B1*A21)/(A11*A22-A21*A12) 

C--CHECK XC AND YC TO BE WITHIN BOUNDARY LIMITS 
c if(xc.gt.2.0)go to 1 

CALL CHKD 
IF(IFLAGC.Eq.l) THEN 
TAREA=TAREAN 
IN=I 
XCC=XC 

EiW" 
1 CONTINUE 

YC=YCC 



www.manaraa.com

118 

RETURN 
END 

SUBROUTINE CIRCUM(IN) 
$INCLUDE grids.common 

RADC=0.0 
DO 1 1=1,NEL 
I1=NCELL(4,I) 
I2=NCELL(5,I) 
I3=NCELL(6,I) 
X1=X(I1) 
X2=X(I2) 
X3=X(I3) 
Y1=Y(I1) 
Y2=Y(I2) 
Y3=Y(I3) 
A=SQRT((X1-X2)**2+(Y1-Y2)**2) 
B=SqRT((X2-X3)**2+(Y2-Y3)**2) 
C=SqRT((X3-X1)**2+(Y3-Yl)**2) 
S=.5*(A+B+C) 
RADCN=A*B*C/(4.*SqRT(S*(S-A)*(S-B)*(S-C)) ) 
IF(RADCN.GT.RADC)THEN 

Mill 
A22=Y1-Y3 
Bl=.5*(X1*X1-X2*X2+Y1*Y1-Y2*Y2) 
B2=.5*(X1*X1-X3*X3+Y1*Y1-Y3*Y3) 
XC=(B1*A22-B2*A12)/(A11*A22-A21*A12) 
YC=(B2*A11-B1*A21)/(A11*A22-A21*A12) 

C—CHECK XÇ AND YC TO BE WITHIN BOUNDARY LIMITS 
c if(xc.lt.3.0.or.xc.gt.9.0)go to 1 
c if(yc.lt.-0.7.or.yc.gt.0.7)go to 1 
c if(xc.gt.0.55)go to 1 
c if(xc.lt.-.55)go to 1 
c if(yc.gt..55)go to 1 
c if(yc.lt.-.55)go to 1 

if(xc.gt.l2.0)go to 1 
if Ûc.It .-12.0)go to 1 
if(yc.gt.l2.0)go to 1 
if(yc.lt.-12.0)go to 1 
CALL CHKD 
IF(IFLAGC.EQ.l) THEN 

RADC=RADCN 
IN=I 

1 CONTINUE 



www.manaraa.com

119 

REJURN 

SUBROUTINE SIDE(IN) 
$INCLUDE grids.common 

DO l'l=l,NEL 
I1=NCELL(4,I) 
I2=NCELL(5,I) 
I3=NCELL(6,I) 
X1=X(I1) 
X2=X(I2) 
X3=X(I3) 
Y1=Y(I1) 
Y2=Y(I2) 
Y3=Y(I3) 
A=SqRT((X1-X2)**2+(Y1-Y2)**2) 
B=SQRT((X2-X3)**2+(Y2-Y3)**2) 
C=SQRT((X3-X1)**2+(Y3-Y1)**2) 
S=A+B+C 
SD3=S/AMIN1(A,B,C) 
IF(SD3.GT.SD)THEN 

A11=X1-X2 

mm 
Bl=.5*(X1*X1-X2*X2+Y1*Y1-Y2*Y2) 
B2=.5*(X1*X1-X3*X3+Y1*Y1-Y3*Y3) 
XC=(B1*A22-B2*A12)/(A11*A22-A21*A12) 
YC=(B2*A11-B1*A21)/(A11*A22-A21*A12) 

C--CHECK XC AND YC TO BE WITHIN BOUNDARY LIMITS 
CALL CHKD 
IF(IFLAGC.Eq.l) THEN 

kW 
1 CONTINUE 

98# 

BBS™ 

SUBROUTINE EPI(IN) 



www.manaraa.com

120 

$INCLUDE grids.common 
C Explicit point input from terminal. 

1 CONTINUE 
PRINT*,"Input X coordinate of new point." 
READ(5,*)XC 
PRINT*,"Input Y coordinate of new point." 
READ(5,*)YC 

C--CHECK XC AND YC TO BE WITHIN BOUNDARY LIMITS 
CALL CHKD 
IFdFLAGC.EQ.l) THEN 
PRINT*,"Point is OK." 
ELSE 
PRINT*,"Point lies outside domain; enter new point.' 

iSoS ' 

SUBROUTINE DELETE 
$INCLUDE grids.common 
C Delete cells whose circumcircle includes the new point 

NCE=0 
DO 1 1=1,NEL 

C Compute circumcircle radius of all current triangles 
C and the circumcenter coordinates, RCI, XCI, YCI 

I1=NCELL(4,I) 
I2=NCELL(5,I) 
I3=NCELL(6,I) 
Xl=X(Ii) 
X2=X(I2) 
X3=X(I3) 
Y1=Y(I1) 
Y2=Y(I2) 
Y3=Y(I3) 
A=SQRT((X1-X2)**2+(Y1-Y2)**2) 
B=SQRT((X2-X3)**2+(Y2-Y3)**2) 
C=SQRT((X3-Xi)**2+(Y3-Y1)**2) 
S=.5*(A+B+C) 
RCI=A*B*C/(4.*SQRT(S*(S-A)*(S-B)*(S-C))) 

ill 
Bl=.5*(X1*X1-X2*X2+Y1*Y1-Y2*Y2) 
B2=.5*(X1*X1-X3*X3+Y1*Y1-Y3*Y3) 
XCI=(B1*A22-B2*A12)/(A11*A22-A21*A12) 
YCI=(B2*A11-B1*A21)/(A11*A22-A21*A12) 

C Compute distance from circumcenter of cell I to new point 
C Store the cell number for elimination and reconnection 
C if R < RCI 

R=SQRT((XCI-XC)**2 + (YCI-YC)**2) 
IF(R.LT.RCI)THEN 

NCE=NCE+1 



www.manaraa.com

121 

NCST(NCE)=I 
print*,"cell to be deleted=",i 

CONTINUE 
RETURN 

SUBROUTINE RECON 
$INCLUDE grids.common 

RT0D=180./3.141592654 
C Divide eliminated region into new triangular cells 
C Store all points from eliminated triangles 

NCR=0 
DO 1 N=1,NCE 

I=NCST(N) 
NCR=NCR+1 
NTR(NCR)=NCELL(4,I) 
NCR=NCR+1 
NTR(NCR)=NCELL(5,I) 
NCR=NCR+1 
NTR(NCR)=NCELL(6,I) 

1 CONTINUE 
C Remove points with repeated indexes 

DO 2 I=1,NCR-1 
IF(NTR(I).NE.-999)THEN 

DO 3 J=I+1,NCR 
IF(NTR(I).EQ.NTR(J))NTR(J)=-999 

3 E®IN<JE 
2 CONTINUE 

NRI=0 
DO 4 1=1,NCR 
IF(NTR(I).NE.-999)THEN 
NRI=NRI+1 
NTR(NRI)=NTR(I) 

ENDIF 
4 CONTINUE 

C Compute the angle that the vector connecting the sorted 
C points with the new point makes with the horizontal 

DO 5 1=1,NRI 
N=NTR(I) 
HYP=SQRT((X(N)-X(NPTT))**2+(Y(N)-Y(NPTT))**2) 
ALPHA(I)=ACOS((X(N)-X(NPTT))/HYP) 
ALPHA(I)=ALPHA(I)*RTOD 
IF(Y(N)-Y(NPTT).LT.0.0)ALPHA(I)=360.-ALPHA(I) 

5 CONTINUE 

C Reconnect points into triangles by connecting the new point and 
C the sorted points with its nearest neighbor in the counter-
C clpckwise direction. A correction must be i(iade if the nearest 
C neighbor liesabove the 0 degree axis by adding 360 degrees 
C to its angle. 



www.manaraa.com

122 

DO 6 1=1,NRI 
DELALl=-360. 
ALPHAI=ALPHA(I) 
DO 7 J=1,NRI 

ALPHAJ=ALPHA(J) 
IF(ALPHAI-ALPHAJ.GT.180.)ALPHAJ=ALPHAJ+360, 
DELAL=ALPHAI-ALPHAJ 
IF(DELAL.LT.O.O)THEN 

IF(DELAL.GT.DELALl)THEN 

ggSIEfi 
NCELL(4,NEL)=NTR(I) 
NCELL(5,NEL)=NTR(K) 
NCELL(6,NEL)=NPTT 

CONTINUE 
RETURN 
END 

SUBROUTINE RBC 
$INCLUDE grids.common 
C Remove bogus cells 
C Flag bogus cells 

DO 1 N=1,NCE 
I=NCST(N) 
NCELL(4,I)=-999 

1 CONTINUE 
C Restack cells without bogus cells 

NT=0 
DO 2 N=1,NEL 
IF(NCELL(4,N).NE.-999) THEN 

NT=NT+1 
NCELL(4,NT)=NCELL(4,N) 
NCELL(5,NT)=NCELL(5,N) 
NCELL(6,NT)=NCELL(6,N) 

ENDIF 
2 CONTINUE 

NEL=NT 
print*,'Total number of elements=',nel 

RETURN 
END 

SUBROUTINE ORIENT 
$INCLUDE grids.common 
C Check triangle orientation. Node numbering should be in a 



www.manaraa.com

123 

C counterclockwise direction(i.e. cross product of edges should 
C be positive). If cross product is negative exchange any two 
C indexes. 

DO 1 1=1,NEL 
I1=NCELL(4,I) 
I2=NCELL(5,I) 
I3=NCELL(6,I) 
AI=X(I2)-X(I1) 
BI=X(I3)-X(I1) 
AJ=Y(I2)-Y(I1) 
BJ=Y(I3)-Y(I1) 
ACROSSB=AI*BJ - BI*AJ 
IF(ACROSSB.LT.0.0)THEN 

mî 
NCELL(4,I)=I1C 
NCELL(5,I)=I2C 

1 CONTINUE 

ggURN 

SUBROUTINE REMDUP 
$INCLUDE grids.common 
C Determine duplicate cells and CALL RBC to delete them 

N=0 
DO 1 I=1,NEL-1 
I1=NCELL(4,I) 
I2=NCELL(5,I) 
I3=NCELL(6,I) 
DO 2 IC=I+1,NEL 
I1C=NCELL(4,IC) 
I2C=NCELL(5,IC) 
I3C=NCELL(6,IC) 
IF(II.EQ.lie.AND.12.EQ.I2C.AND.13.EQ.I3C)THEN 

N=N+1 
NCST(N)=IC 

ELSE 
IF(Il.Eq.I2C.AND.I2.Eq.I3G.AND.I3.EQ.IlC)THEN 

N=N+1 
NCST(N)=IC 

ELSE 
IF(I1.EQ.I3C.AND.I2.EQ.I1C.AND.I3.EQ.I2C)THEN 

N=N+1 
NCST(N)=IC 

ii 
Î aw 

NCE=N 



www.manaraa.com

124 

C Call Subroutine RBC to remove flagged cells 
CALL RBC 

SUBROUTINE SIDEAB 
$INCLUDE grids.common 
C Side A-B of solid wall boundary connectivity 

DO 1 K=1,NSB 
DO 2 I=NSWB(K),NSWE(K)-1 
I1=NC0(I) 
I2=NC0(I+1) 
NC=0 
DO 3 IC=1,NEL 
IF(NC.EQ.l) GO TO 2 
I1C=NCELL(4,IC) 
I2C=NCELL(5,IC) 
I3C=NCELL(6,IC) 
IF(Il.Eq.IlC.AND.I2.Eq.I2C.0R.Il.Eq.I2C.AND.I2.EQ.IlC)THEM 
NC=NC+1 
ELSE 
IF(Il.Eq.I2C.AND.I2.Eq.I3C.0R.Il.Eq.I3C.AND.I2.Eq.I2C)THEN 
NC=NC+1 
NCELL(4,IC)=I2C 
NCELL(5,IC)=I3C 
NCELL(6,IC)=I1C 

ENDIF 
IF(Il.Eq.I3C.AND.I2.Eq.IlC.0R.Il.Eq.IlC.AND.I2.Eq.I3C)THEN 
NC=NC+1 
NCELL(4,IC)=I3C 
NCELL(5,IC)=I1C 
NCELL(6,IC)=I2C 

ENDIF 
ENDIF 

i im 

C Side A-B of exit boundary connectivity 
DO 4 K=1,NEB 
DO 5 I=NEXB(K),NEXE(K)-1 
I1=NC0(I) 
I2=NC0(I+1) 
NC=0 
DO 6 IC=1,NEL 
IF(NC.Eq.l) GO TO 5 
I1C=NCELL(4,IC) 
I2C=NCELL(5,IC) 
I3C=NCELL(6,IC) 
IF(Il,Eq.IlC.AND.I2.Eq.I2C.0R.Il.Eq.I2C.AND.I2.Eq.IlC)THEN 

IF(II.Eq.I2C.AND.12.Eq.I3C.OR.I1.Eq.I3C.AND.12.Eq.I2C)THEN 
NC=NC+1 



www.manaraa.com

125 

NCELL(4,IC)=I2C 
NCELL(5,IC)=I3C 
NCELL(6,IC)=I1C 

ENDIF 
IF(Il.EQ.I3C.AND.I2.Eq.IlC.0R.H.EQ.IlC.AND.I2.EQ.I3C)THEN 

NC=NC+1 
NCELL(4,IC)=I3C 
NCELL(5,IC)=I1C 
NCELL(6,IC)=I2C 

g 
4 CONTINUE 
Side A-B of inlet boundary connectivity 

DO 7 K=1,NIB 
DO 8 I=NINB(K),NINE(K)-1 
I1=NC0(I) 
I2=NC0(I+1) 
NC=0 
DO 9 IC=1,NEL 
IF(NC.EQ.l) GO TO 8 
I1C=NCELL(4,IC) 
I2C=NCELL(5,IC) 
I3C=NCELL(6,IC) 
IF(I1.EQ.lie.AND.12.EQ.I2C.OR.I1.EQ.I2C.AND.12.EQ.I1C)THEN 

NC=NC+1 
ELSE 
IF(Il.EQ.I2C.AND.I2.Eq.I3C.0R.Il.EQ.I3C.AND.I2.EQ.I2C)THEN 

NC=NC+1 
NCELL(4,IC)=I2C 
NCELL(5,IC)=I3C 
NCELL(6,IC)=I1C 

ENDIF 
IF(I1.EQ.I3C.AND.12.EQ.IIC.OR.II.EQ.IIC.AND.12.EQ.I3C)THEN 

NC=NC+1 
NCELL(4,IC)=I3C 
NCELL(5,IC)=I1C 
NCELL(6,IC)=I2C 

iseîf ; « 
RETURN 
END 

SUBROUTINE FACELL 
$INCLUDE grids.common 
C Creates connectivity between cell numbers and face numbers 

N=0 

^ ^D0®1^Ï=1,NEL-1 
NC=0 



www.manaraa.com

126 

I1=NCELL(4,I) 
I2=NCELL(5,I) 
DO 2 IC=I+1,NEL 
IF(NC.EQ.2) GO TO 1 
IF(I1.EQ.NCELL(5,IC).AND.12.EQ.NCELL(4,IC))THEN 

N=N+4*^ 
NCELL(1,I)=N 
NCELL(1,IC)=N 
NFACE(1,N)=I 
NFACE(2,N)=IC 

ELSE 
IF(I1.EQ.NCELL(6,IC).AND.12.EQ.NCELL(5,IC))THEN 

NC=NC+1 
N=N+1 
NCELL(1,I)=N 
NCELL(2,IC)=N 
NFACE(1,N)=I 
NFACE(2,N)=IC 

ELSE 
IF(I1.EQ.NCELL(4,IC).AND.12.EQ.NCELL(6,IC))THEN 

Br' 
NCELL(1,I)=N 
NCELL(3,IC)=N 
NFACE(1,N)=I 
NFACE(2,N)=IC 

mi 

Î cBSffir 

^D0®3®Ï=1,NEL-1 
NC=0 
I2=NCELL(5,I) 
I3=NCELL(6,I) 
DO 4 IC=I+1,NEL 
IF(NC.EQ.2) GO TO 3 

IF(12.EQ.NCELL(5,IC).AND.13.EQ.NCELL(4,IC))THEN 
N=N+4*' 
NCELL(2.I)=N 
NCELL(1,IC)=N 
NFACE(1,N)=I 
NFACE(2,N)=IC 

ELSE 
IF(12.EQ.NCELL(6,IC).AND.13.EQ.NCELL(5,IC))THEN 

NC=NC+1 
N=N+1, 
NCELL(2,I)=N 
NCELL(2,IC)=N 
NFACE(1,N)=I 
NFACE(2,N)=IC 

ELSE 
IF(12.EQ.NCELL(4,IC).AND.13.EQ.NCELL(6,IC))THEN 

NC=NC+1 



www.manaraa.com

127 

N=N+1 
NCELL(2,I)=N 
NCELL(3,IC)=N 
NFACE(1,N)=I 
NFACE(2,N)=IC 

ENDIF 

* cSBRW 

D̂0®5̂ ï=l,NEL-l 
NC=0 
I3=NCELL(6,I) 
I4=NCELL(4,I) 
DO 6 IC=I+1,NEL 
IF(NC.Eq.2) GO TO 5 
IF(13.EQ.NCELL(5,IC).AND.14.EQ.NCELL(4,IC))THEN 

KW 
NCELL(3,I)=N 
NCELL(1,IC)=N 
NFACE(1,N)=I 
NFACE(2,N)=IC 

ELSE 
IF(13.EQ.NCELL(6,IC).AND.14.EQ.NCELL(5,IC))THEN 

NCELL(3,I)=N 
NCELL(2,IC)=N 
NFACE(1,N)=I 
NFACE(2,N)=IC 

ELSE 
IF(13.EQ.NCELL(4,IC).AND.14.EQ.NCELL(6,IC))THEN 

NC=NC+1 
N=N+1 
NCELL(3,I)=N 
NCELL(3,IC)=N 
NFACE(1,N)=I 
NFACE(2,N)=IC 

ill 
1 cgmur 

Side A-B of solid wall boundary connectivity 
DO 107 K=1,NSB 
DO 7 I=NSWB(K),NSWE(K)-1 
I1=NC0(I) 
I2=NC0(I+1) 
NC=0 
DO 8 IC=1,NEL 
IF(NC.EQ.l) GO TO 7 
I1C=NCELL(4,IC) 
I2C=NCELL(5,IC) 
IF(11. EQ . lie. AND. 12 . EQ . I2C. OR. II. EQ. I2C. AND. 12. EQ . IlOTHEN 

NC=NC+1 



www.manaraa.com

128 

N=N+1 
NGELL(1,IC)=N 
NFACE(1,N)=IC 
NFACE(2,N)=0 

ENDIF 

10? 8§iSif 
C Side A-B of exit boundary connectivity 

DO 109 K=1,NEB 
DO 9 I=NEXB(K),NEXE(K)-1 
I1=NC0(I) 
I2=NGG(I+1) 
NC=0 
DO 10 IC=1,NEL 
IF(NC.EQ.l) GO TO 9 
I1C=NCELL(4,IC) 
I2C=NCELL(5,IC) 
IF(II.EQ.lie.AND.12.EQ.I2C)THEN 

lesïf' 
NCELL(1,IC)=N 
NFACE(1,N)=IC 
NFACE(2,N)=-2 

ENDIF 
'8 cSKIW 

109 CONTINUE 
C Side A-B of inlet boundary connectivity 

DO 111 K=1,NIB 
DO 11 I=NINB(K),NINE(K)-1 
I1=NC0(I) 
I2=NC0(I+1) 
NC=0 
DO 12 IC=1,NEL 
IF(NC.EQ.l) GO TO 11 
I1C=NCELL(4,IC) 
I2C=NCELL(5,IC) 
IF(Il.Eq.IlC.AND.I2.EQ.I2C)THEN 

N=N+4*^ 
NCELL(1,IC)=N 
NFACE(1,N)=IC 
NFACE(2,N)=-1 

ENDIF 

J sEif 
C Side A-B of symmetric boundary connectivity 
C NSYP is the node number that is periodic with the first 
C index number, NSYB. 

DO 113 K=1,NYB 
NP=NSYP(K) 
DO 13 I=NSYB(K),NSYE(K)-1 
I1=NC0(I) 
I2=NC0(I+1) 



www.manaraa.com

129 

NP=NP-1 
I1P=NC0(NP) 
I2P=NCD(NP+1) 
NC=0 
DO 14 IC=1,NEL 
IF(NC.EQ.l) GO TO 15 
I1C=NCELL(4,IC) 
I2C=NCELL(5,IC) 
I3C=NCELL(6,IC) 
IF(I1.Eq.IIC.AND.12.EQ.I2C)THEN 

NCELL(1,IC)=N 
NFACE(1,N)=IC 

ELSE 
IF(I1.EQ.I2C.AND.12.EQ.ISC)THEN 

HW 
NCELL(2,IC)=N 
NFACE(1,N)=IC 

ELSE 
IF(Il.Eq.I3C.AND.I2.Eq.IlC)THEN 

N=N+1*^ 
NCELL(3,IC)=N 
NFACE(1,N)=IC 

ii 
IF(NC.EQ.2) GO TO 13 
I1C=NCELL(4,IC) 
I2C=NCELL(5,IC) 
I3C=NCELL(6,IC) 
IF(IlP.EQ.IlC.AND.I2P.Eq.I2C)THEN 

NC=NC+1 
NCELL(1,IC)=N 
NFACE(2.N)=IC 

ELSE 
IF(IIP.Eq.I2C.AND.I2P.Eq.I3C)THEN 

NC=NC+1 
NCELL(2,IC)=N 
NFACE(2,N)=IC 

ELSE 
IF(IIP.Eq.I3C.AND.I2P.Eq.I1C)THEN 

NC=NC+1 
NCELL(3,IC)=N 
NFACE(2,N)=IC 

11 
16 CONTINUE 
13 CONTINUE 

113 CONTINUE 
NFT=N 



www.manaraa.com

130 

SUBROUTINE BPLOT 
$INCLUDE grids.common 

DO 1 I=1,NPB(1) 
WRITE(31,*)XB(1,I),YB(1,I) 

1 CONTINUE 

DO 2 I=1,NPB(2) 
WRITE(32,*)XB(2,I),YB(2,I) 

2 CONTINUE 

DO 3 I=1,NPB(3) 
WRITE(33,*)XB(3.I),YB(3,I) 

3 CONTINUE 
C Output elements for gridpl plotting 

WRITE(50,40)NEL 
DO 20 1=1,NEL 

NAB=NCELL(1,I) 
NBC=NCELL(2,I) 
NCA=NCELL(3,I) 
NBTAB=NFACE(1,NAB)+NFACE(2,NAB)-I 
NBTBC=NFACE(1,NBC)+NFACE(2,NBC)-I 
NBTCA=NFACE(1,NCA)+NFACE(2,NCA)-I 

I1=NCELL(4,I) 
I2=NCELL(5,I) 
I3=NCELL(6,I) 

WRITE(50,50)X(I1),Y(I1),X(I2),Y(I2),X(I3),Y(I3) 
WRITE(5 0,55)NBTAB,NBTBC,NBTCA 

20 CONTINUE 
40 FORMAT(317) 
50 F0RMAT(6E13.6) 
55 F0RMAT(3I6) 

RETURN 
END 

SUBROUTINE RESTRT(NRW) 
$INCLUDE grid5.common 

REWIND(20) 

IF(NRW.Eq.l)THEN 
READ(20,*)NPTT,NEL 
DO 1 I=1,NPTT 
READ(20,*)X(I),Y(I) 



www.manaraa.com

131 

g8''F?if.NEL 
READ(20,*)(NCELL(K,I),K=4,6) 
CONTINUE 
ENDIF 

REWIND(20) 

IF(NRW.EQ.2)THEN 
WRITE(20,*)NPTT,NEL 
DO 3 I=1,NPTT 
WRITE(20,*)X(I),Y(I) 

ÊSWf,NEL 
WRITE(20,*)(NCELL(K,I),K=4,6) 
CONTINUE 
ENDIF 

REWIND(20) 

ggURN 

SUBROUTINE OUTPUT 
$INCLUDE grids.common 
C Write out face data 

WRITE(40,10) 
WRITE(40,11) 

WRITE(40,12)NFT 
WRITE(40,13) 
DO 1 1=1,NFT 
WRITE(40,14)1,(NFACE(K,I),K=1,2) 

1 CONTINUE 
C Write out cell data 

WRITE(40,15) 
WRITE(40,16) 
WRITE(40,17)NEL 
WRITE(40,18) 
DO 2 1=1,NEL 
WRITE(40,19)I,(NCELL(K,I),K=1,6) 

2 CONTINUE 
C Write out node data 

WRITE(45,20) 
WRITE(45,21) 
WRITE(45,22)NPTT 
WRITE(45,23) 
DO 3 I=1,NPTT 
WRITE(45,24)I,X(I),Y(I) 

3 CONTINUE 



www.manaraa.com

132 

10 FORMAT(2X,'FACE DATA') 
11 FORMAT(2X,'TOTAL NUMBER OF FACES') 
12 FORMAT(IIO) 
13 FORMAT(4X,'FACE',4X,'CELLl',4X,'CELL2') 
14 F0RMAT(2X,I5,5X,I5,5X,I5) 
15 FORMAT(2X,'CELL DATA') 
16 FORMAT(2X,'TOTAL NUMBER OF CELLS') 
17 FORMAT(IIO) 
18 FORMAT(5X,'CELL',13X,'FACE NUMBERS',19X, 

.'NODE NUMBERS') 
19 F0RMAT(7I10) 
20 FORMAT(2X,'NODES') 
21 FORMAT(2X,'TOTAL NUMBER OF NODES=') 
22 FORMAT(IIO) 
23 F0RMAT(3X,'NODE',8X,'X',10X,'Y') 
24 F0RMAT(2X,I4,2F13.6) 

RETURN 
END 

SUBROUTINE BFC 
$INCLUDE grids.common 

DIMENSION NF(4),NCEFF(2) 
»'NCEF=0 

DO 1 N=1,NEL 
NBCC=0 

DO 2 K=l,3 
NFC=NCELL(K,N) 
NCC=NFACE(1,NFC)+NFACE(2,NFC)-N 
IF(NCC.LE.O)THEN 

NBCC=NBCC+1 
ENDIF 

^ 2 .CONTINUE 
C Switch diagonal face of cells with more than one boundary face. 

IF(NBCC.GT.1)THEN 
NCEF=NCEF+1 
NF(1)=NCELL(4,N) 
NF(2)=NCELL(5,N) 
NF(3)=NCELL(6,N) 
NF(4)=NCELL(4,N) 

C Determine common face and node numbers 
DO 3 K=l,3 
NFC=NCELL(K,N) 
NCC=NFACE(1,NFC)+NFACE(2, NFC ) -N 
IF(NCC.GT.0)THEN 

Esms 
N0DE1=NF(K) 
N0DE2=NF(K+1) 

ENDIF 
3 CONTINUE 

NCEFF(1)=N 
NCEFF(2)=NCC0M 



www.manaraa.com

133 

N0DE3=NCELL(4,NCCOM)+NCELL(5,NCCOM)+NCELL(6,NCCOM)-NODE1-N0DE2 
C Renumber the cells with the new diagonal 

M=0 
DO 4 K=l,3 
NFC=NCELL(K,N) 
NCC=NFACE(1,NFC)+NFACE(2, NFC ) -N 
IF(NCC.LE.O)THEN 
M=M+1 
NCEX=NCEFF(M) 
NCELL(4,NCEX)=NF(K) 
NCELL(5,NCEX)=NF(K+1) 
NCELL(6,NCEX)=N0DE3 

ENDIF 
4 CONTINUE 

ENDIF 
1 CONTINUE 

PRINT*,'NUMBER OF CELLS THAT EXCHANGED FACES=',NCEF 
C Recheck cell orientation and generate connectivity arrays if any 
C cells exchanged diagonal faces. 

IF(NCEF.GT.O)THEN 

# PKiS 

RETURN 
END 

SUBROUTINE FCM 
$INCLUDE grids.common 
C Input ordering array for ordering extra viscous triangles 

NPERM(1,1)=1 
NPERM(1,2)=2 
NPERM(1,3)=3 
NPERM(2,1)=2 
NPERM(2,2)=3 
NPERM(2,3)=1 
NPERM(3,1)=3 
NPERM(3,2)=1 
NPERM(3,3)=2 

C Initialize color 
DO 1 K=l,4 
DO 1 1=1,NEL 
NC0L0R(K,I)=0 

1 CONTINUE 
DO 2 1=1,NEL 
NCELL(7,I)=0 

2 CONTINUE 
Bl: 

M§LUE=0 



www.manaraa.com

134 

K=1 
DO 3 1=1,NEL 

C Faces of cell I 
NF1=NCELL(1,I) 
NF2=NCELL(2,I) 
NF3=NCELL(3,I) 

C Adjacent cells to cell I 
ICB=NFACE(1,NF1) + NFACE(2,NF1) - I 
ICC=NFACE(1,NF2) + NFACE(2,NF2) - I 
ICD=NFACE(1.NF3) + NFACE(2,NF3) - I 
ICA=I 

C Find Cell # ' s  of E, F, G, H, I, J 
C Faces of Cell B 

IF(ICB.GT.O)THEN 
NFS1=NCELL(1,ICB) 
NFS2=NCELL(2,ICB) 
NFS3=NCELL(3,ICB) 

C Cells surrounding cell B (E, F) 
C Determine cell numbers in the order A-E-F 

ICS(1)=NFACE(1,NFS1)+NFACE(2,NFS1)-ICB 
ICS(2)=NFACE(1,NFS2)+NFACE(2,NFS2)-ICB 
ICS(3)=NFACE(1,NFS3)+NFACE(2,NFS3)-ICB 
NFA=INT(1./COSH(FLOAT(ICS(1)-ICA))) 
NFB=INT(1./C0SH(FL0AT(ICS(2)-ICA))) 
NFC=INT(1./COSH(FLOAT(ICS(3)-ICA)) ) 
LAB=NFA*1 + NFB*2 + NFC*3 
LAD=NPERM(LAB,2) 
LDB=NPERM(LAB,3) 

ICE=ICS(LAD) 
ICF=ICS(LDB) 

ELSE 

C Faces of Cell C 
NFS1=NGELL(1,IGC) 
NFS2=NCELL(2,ICC) 
NFS3=NCELL(3,ICC) 

C Cells surrounding cell C (G, H) 
C Determine cell numbers in the order A-G-H 

ICS(l)=NFACE(1,NFS1)+NFACE(2,NFS1)-ICC 
ICS(2)=NFACE(1,NFS2)+NFACE(2,NFS2)-ICC 
ICS(3)=NFACE(1,NFS3)+NFACE(2,NFS3)-ICC 
NFA=INT(1./C0SH(FL0AT(ICS(1)-ICA))) 
NFB=INT(1./CQSH(FL0AT(ICS(2)-ICA)) ) 
NFC=INT(1./COSH(FLOAT(ICS(3)-ICA))) 
LAB=NFA*1 + NFB*2 + NFC*3 
LAD=NPERM(LAB,2) 
LDB=NPERM(LAB,3) 

ICG=ICS(LAD) 
ICH=ICS(LDB) 

C Faces of Cell D 
NFS1=NCELL(1,ICD) 



www.manaraa.com

135 

NFS2=NCELL(2,ICD) 
NFS3=NCELL(3,ICD) 

C Cells surrounding cell D (I, J) 
C Determine cell numbers in the order A-I-J 

ICS(1)=NFACE(1,NFS1)+NFACE(2,NFS1)-ICD 
ICS(2)=NFACE(1,NFS2)+NFACE(2,NFS2)-ICD 
ICS(3)=NFACE(1,NFS3)+NFACE(2,NFS3)-ICD 
NFA=INT(1./COSH(FLOAT(ICS(1)-ICA))) 
NFB=INT(1./COSH(FLOAT(ICS(2)-ICA))) 
NFC=INT(1./C0SH(FL0AT(ICS(3)-ICA)) ) 
LAB=NFA*1 + NFB*2 + NFC*3 
LAD=NPERM(LAB,2) 
LDB=NPERM(LAB,3) 

ICI=ICS(LAD) 
ICJ=ICS(LDB) 
NC0LA=1 

IF(ICB.LE.O)THEN 
NC0LB=0 
iSc0LF=0 

ELSE 
NC0LB=NCELL(7,ICB) 
NC0LE=NCELL(7,ICE) 
NC0LF=NCELL(7,ICF) 

ENDIF 
IF(ICE.LE.O)THEN 

NC0LE=0 
ELSE 

NC0LE=NCELL(7,ICE) 
ENDIF 
IF(ICF.LE.O)THEN 

NC0LF=NCELL(7,ICF) 
ENDIF 
NC0LC=NCELL(7.ICC) 
NC0LG=NCELL(7,ICG) 
NC0LH=NCELL(7,ICH) 
NG0LD=NCELL(7,ICD) 
NC0LI=NCELL(7,ICI) 
NC0LJ=NCELL(7,ICJ) 

IF(NCOLA.NE.NCOLB)THEN 
IF(NCOLA.NE.NCOLC)THEN 

IF(NCOLA.NE.NCOLD)THEN 
IF(NCOLA.NE.NCOLE)THEN 
IF(NCOLA.NE.NCOLF)THEN 
IF(NCOLA.NE.NCOLG)THEN 
IF(NCOLA.NE.NCOLH)THEN 
IF(NCOLA.NE.NCOLI)THEN 
IF(NCOLA.NE.NCOLJ)THEN 
NBLUE=NBLUE+1 
NCOLOR(K,NBLUE)=I 
NCELL(7,I)=1 
ENDIF 
ENDIF 



www.manaraa.com

136 

ibbii 

J' 
3 CONTINUE 

NGREEN=0 
NRED=0 
NYELL0W=0 
DO 5 1=1,NEL 
IF(NCELL(7,I).Eq.O)THEN 

C Faces of cell I 
NF1=NCELL(1,I) 
NF2=NCELL(2,I) 
NF3=NCELL(3,I) 

C Adjacent cells to cell I 
ICB=NFACE(1,NF1) + NFACE(2,NF1) - I 
ICC=NFACE(1,NF2) + NFACE(2,NF2) - I 
ICD=NFACE(1,NF3) + NFACE(2,NF3) - I 
ICA=I 

C Find Cell #'s of E, F, G, H, I, J 
C Faces of Cell B 

IF(ICB.GT.O)THEN 
NFS1=NCELL(1,ICB) 
NFS2=NCELL(2,ICB) 
NFS3=NCELL(3,ICB) 

C Cells surrounding cell B (E, F) 
C Determine cell numbers in the order A-E-F 

ICS(1)=NFACE(1,NFS1)+NFACE(2,NFS1)-ICB 
ICS(2)=NFACE(1,NFS2)+NFACE(2,NFS 2)-1CB 
ICS(3)=NFACE(1,NFS3)+NFACE(2,NFS3)-ICB 
NFA=INT(1./C0SH(FL0AT(ICS(1)-ICA))) 
NFB=INT(1./C0SH(FL0AT(ICS(2)-ICA))) 
NFC=INT(1./COSH(FLOAT(ICS(3)-ICA))) 
LAB=NFA*1 + NFB*2 + NFC*3 
LAD=NPERM(LAB,2) 
LDB=NPERM(LAB,3) 

ICE=ICS(LAD) 
ICF=ICS(LDB) 
ELSE 

C Faces of Cell C 
NFS1=NCELL(1,ICC) 
NFS2=NCELL(2,ICC) 
NFS3=NCELL(3,ICC) 

C Cells surrounding cell C (G, H) 
C Determine cell numbers in the order A-G-H 

ICS(1)=NFACE(1,NFS1)+NFACE(2,NFS1)-ICC 
ICS(2)=NFACE(1,NFS2)+NFACE(2,NFS 2)-ICC 



www.manaraa.com

137 

ICS(3)=NFACE(1,NFS3)+NFACE(2,NFS3)-ICC 
NFA=INT(1./COSH(FLOAT(ICS(1)-ICA))) 
NFB=INT(1./C0SH(FL0AT(ICS(2)-ICA))) 
NFC=INT(1./COSH(FLOAT(ICS(3)-ICA))) 
LAB=NFA*1 + NFB*2 + NFC*3 
LAD=NPERM(LAB,2) 
LDB=NPERM(LAB,3) 

ICG=ICS(LAD) 
ICH=ICS(LDB) 

—Faces of Cell D 
NFS1=NCELL(1,ICD) 
NFS2=NCELL(2,ICD) 
NFS3=NCELL(3,ICD) 
—Cells surrounding cell D (I, J) 
--Determine cell numbers in the order A-I-J 
ICS(l)=NFACE(1,NFS1)+NFACE(2,NFS1)-ICD 
ICS(2)=NFACE(1,NFS2)+NFACE(2,NFS2)-ICD 
ICS(3)=NFACE(1,NFS3)+NFACE(2,NFS3)-ICD 
NFA=INT(l./COSH(FLOAT(ICS(1)-ICA))) 
NFB=INT(1./COSH(FL0AT(ICS(2)-ICA))) 
NFC=INT(1./COSH(FLOAT(ICS(3)-ICA))) 
LAB=NFA*1 + NFB*2 + NFC*3 
LAD=NPERM(LAB,2) 
LDB=NPERM(LAB,3) 

ICI=ICS(LAD) 
ICJ=ICS(LDB) 
NC0LA=2 

IF(ICB.LE.O)THEN 
NC0LB=0 
iSgBfcP: 

ELSE 
NC0LB=NCELL(7,ICB) 
NC0LE=NCELL(7,ICE) 
NC0LF=NCELL(7,ICF) 

ENDIF 
IF(ICE.LE.O)THEN 

NC0LE=NCELL(7,ICE) 
ENDIF 
IF(ICF.LE.O)THEN 
NC0LF=0 

ELSE 
NC0LF=NCELL(7,ICF) 

ENDIF 
NC0LC=NCELL(7,ICC) 
NC0LG=NCELL(7,ICG) 
NC0LH=NCELL(7,ICH) 
NC0LD=NCELL(7,ICD) 
NC0LI=NCELL(7,ICI) 
NC0LJ=NCELL(7,ICJ) 

IF(NCOLA.NE.NCOLB)THEN 
IF(NCOLA.NE.NCOLC)THEN 



www.manaraa.com

138 

IF(NCOLA.NE.NCOLD)THEN 
IF(NCOLA.NE.NCOLE)THEN 
IF(NCOLA.NE.NCOLF)THEN 
IF(NCOLA.NE.NCOLG)THEN 
IF(NCOLA.NE.NCOLH)THEN 
IF(NCOLA.NE.NCOLI)THEN 
IF(NCOLA.NE.NCOLJ)THEN 

NGREEN=NGREEN+1 
NC0L0R(2,NGREEN)=I 
NCELL(7,I)=2 

J 
ENDIF 

5 CONTINUE 
DO 6 1=1,NEL 
IF(NCELL(7,I).EQ.O)THEN 

C Faces of cell I 
NF1=NCELL(1,I) 
NF2=NCELL(2,I) 
NF3=NCELL(3,I) 

C Adjacent cells to cell I 
ICB=NFACE(1,NF1) + NFACE(2,NF1) - I 
ICC=NFACE(1,NF2) + NFACE(2,NF2) - I 
ICD=NFACE(1,NF3) + NFACE(2,NF3) - I 
ICA=I 

C Find Cell #'s of E, F, G, H, I, J 
C Faces of Cell B 

IF(ICB.GT.O)THEN 
NFS1=NCELL(1,ICB) 
NFS2=NCELL(2,ICB) 
NFS3=NCELL(3,ICB) 

C Cells surrounding cell B (E, F) 
C -Determine cell numbers in the order A-E-F 

ICS(1)=NFACE(1,NFS1)+NFACE(2,NFS1)-ICB 
ICS(2)=NFACE(1,NFS2)+NFACE(2,NFS2)-ICB 
ICS(3)=NFACE(1,NFS3)+NFACE(2,NFS3)-ICB 
NFA=INT(1./COSH(FLOAT(ICS(1)-ICA))) 
NFB=INT(1./C0SH(FL0AT(ICS(2)-ICA))) 
NFC=INTa ./COSH(FLOAT(ICS (3)-ICA) ) ) 
LAB=NFA*1 + NFB*2 + NFC*3 
LAD=NPERM(LAB,2) 
LDB=NPERM(LAB,3) 

ICE=ICS(LAD) 
ICF=ICS(LDB) 

*181 



www.manaraa.com

139 

ENDIF 
Faces of Cell 

NFS1=NCELL(1,ICC) 
NFS2=NCELL(2,ICC) 
NFS3=NCELL(3,ICC) 
Cells surrounding cell C (G, H) 

—Determine cell numbers in the order A-G-H 
ICS(1)=NFACE(1,NFS1)+NFACE(2,NFS1)-ICC 
ICS(2)=NFACE(1,NFS2)+NFACE(2,NFS2)-ICC 
ICS(3)=NFACE(1,NFS3)+NFACE(2,NFS3)-ICC 
NFA=INT(1./COSH(FLOAT(ICS(1)-ICA))) 
NFB=INT(1./C0SH(FLQAT{ICS(2)-ICA)) ) 
NFC=INT(1./C0SH(FL0AT(ICS(3)-ICA))) 
LAB=NFA*1 + NFB*2 + NFC*3 
LAD=NPERM(LAB,2) 
LDB=NPERM(LAB,3) 

ICG=ICS(LAD) 
ICH=ICS(LDB) 

—Faces of Cell D 
NFS1=NCELL(1,ICD) 
NFS2=NCELL(2,ICD) 
NFS3=NCELL(3,ICD) 

—Cells surrounding cell D (I, J) 
—Determine cell numbers in the order A-I-J 
ICS(1)=NFACE(1,NFS1)+NFACE(2,NFS1)-ICD 
ICS(2)=NFACE(1,NFS2)+NFACE(2,NFS 2)-ICD 
ICS(3)=NFACE(1,NFS3)+NFACE(2,NFS3)-ICD 
NFA=INT(1./COSH(FLOAT(ICS(1)-ICA)) ) 
NFB=INT(1./COSH(FLOAT(ICS(2)-ICA))) 
NFC=INT(i./C0SH(FL0AT(ICS(3)-ICA))) 
LAB=NFA*1 + NFB*2 + NFC*3 
LAD=NPERM(LAB,2) 
LDB=NPERM(LAB,3) 

ICI=ICS(LAD) 
ICJ=ICS(LDB) 
NC0LA=3 

IF(ICB.LE.O)THEN 

NC0LB=NCELL(7,ICB) 
NC0LE=NCELL(7,ICE) 
NC0LF=NCELL(7,ICF) 

ENDIF 
IF(ICE.LE.O)THEN 

ELSE^^"*^ 
NC0LE=NCELL(7,ICE) 

ENDIF 
IF(ICF.LE.O)THEN 

NC0LF=0 
ELSE 
NC0LF=NCELL(7,ICF) 



www.manaraa.com

140 

ENDIF 
NC0LC=NCELL(7,ICC) 
NC0LG=NCELL(7,ICG) 
NC0LH=NCELL(7,ICH) 
NC0LD=NCELL(7,ICD) 
NC0LI=NCELL(7,ICI) 
NC0LJ=NCELL(7,ICJ) 

IF(NCQLA.NE.NCQLB)THEN 
IF(NCOLA.NE.NCOLC)THEN 

IF(NCOLA.NE.NCOLD)THEN 
IF(NCOLA.NE.NCOLE)THEN 
IF(NCOLA.NE.NCOLF)THEN 
IF(NCOLA.NE.NCOLG)THEN 
IF(NCOLA.NE.NCOLH)THEN 
IF(NCOLA.NE.NCOLI)THEN 
IF(NCOLA.NE.NCOLJ)THEN 

NRED=NRED+1 
NC0L0R(3,NRED)=I 
NCELL(7,I)=3 

IE 

JP 
ENDIF 

6 CONTINUE 
DO 7 1=1,NEL 
IF(NCELL(7,I).EQ.O)THEN 

Faces of cell I 
NF1=NCELL(1,I) 
NF2=NCELL(2,I) 
NF3=NCELL(3,I) 

Adjacent cells to cell I 
ICB=NFACE(1,NF1) + NFACE(2,NF1) - I 
ICC=NFACE(1,NF2) + NFACE(2,NF2) - I 
ICD=NFACE(1,NF3) + NFACE(2,NF3) - I 
ICA=I 

-Find Cell #'s of E, F, G, H, I, J 
—Faces of Cell B 
IF(ICB.GT.O)THEN 
NFS1=NCELL(1,ICB) 
NFS2=NCELL(2,ICB) 
NFS3=NCELL(3,ICB) 
—Cells surrounding cell B (E, F) 
—Determine cell numbers in the order A-E-F 
ICS(1)=NFACE(1,NFS1)+NFACE(2,NFS1)-ICB 
ICS(2)=NFACE(1,NFS2)+NFACE(2,NFS2)-ICB 
ICS(3)=NFACE(1,NFS3)+NFACE(2,NFS3)-ICB 
NFA=INT(1./COSH(FLOAT(ICS(1)-ICA))) 



www.manaraa.com

141 

NFB=INT(1./C0SH(FL0AT(ICS(2)-ICA))) 
NFG=INT(1./COSH(FLOAT(ICS(3)-ICA))) 
LAB=NFA*1 + NFB*2 + NFC*3 
LAD=NPERM(LAB,2) 
LDB=NPERM(LAB,3) 

ICE=ICS(LAD) 
ICF=ICS(LDB) 
ELSE 

m» 
—Faces of Cell C 
NFS1=NCELL(1,ICC) 
NFS2=NCELL(2,ICC) 
NFS3=NCELL(3,ICC) 
—Cells surrounding cell C (G, H) 
--Determine cell numbers in the order A-G-H 
ICS(1)=NFACE(1,NFS1)+NFACE(2,NFS1)-ICC 
ICS(2)=NFACE(1,NFS2)+NFACE(2,NFS2)-ICC 
ICS(3)=NFACE(1,NFS3)+NFACE(2,NFS3)-ICC 
NFA=INT(1./COSH(FLOAT(ICS(1)-ICA))) 
NFB=INT(1./C0SH(FL0AT(ICS(2)-ICA))) 
NFC=INT(1./COSH(FLOAT(ICS(3)-ICA))) 
LAB=NFA*1 + NFB*2 + NFC*3 
LAD=NPERM(LAB,2) 
LDB=NPERM(LAB,3) 

ICG=ICS(LAD) 
ICH=ICS(LDB) 

—Faces of Cell D 
NFS1=NCELL(1,ICD) 
NFS2=NCELL(2,ICD) 
NFS3=NCELL(3,ICD) 
—Cells surrounding cell D (I, J) 
—Determine cell numbers in the order A-I-J 
ICS(1)=NFACE(1,NFS1)+NFACE(2,NFS1)-ICD 
ICS(2)=NFACE(1,NFS2)+NFACE(2,NFS 2)-ICD 
ICS(3)=NFACE(1,NFS3)+NFACE(2,NFS3)-ICD 
NFA=INT(1./C0SH(FL0AT(ICS(1)-ICA))) 
NFB=INT(i./COSH(FLOAT(ICS(2)-ICA))) 
NFC=INT(1./C0SH(FL0AT(ICS(3)-ICA))) 
LAB=NFA*1 + NFB*2 + NFC*3 
LAD=NPERM(LAB,2) 
LDB=NPERM(LAB,3) 

ICI=ICS(LAD) 
ICJ=ICS(LDB) 
NC0LA=4 

IF(ICB.LE.0)THEN 
NC0LB=0 

ELSE 
NC0LB=NCELL(7,ICB) 
NC0LE=NCELL(7,ICE) 



www.manaraa.com

142 

NC0LF=NCELL(7,ICF) 
ENDIF 
IF(ICE.LE.O)THEN 
NC0LE=0 

ELSE 
NC0LE=NCELL(7,ICE) 

ENDIF 
IF(ICF.LE.O)THEN 

NC0LF=0 
ELSE 
NC0LF=NCELL(7,ICF) 

ENDIF 
NC0LC=NCELL(7,ICC) 
NC0LG=NCELL(7,ICG) 
NC0LH=NCELL(7,ICH) 
NC0LD=NCELL(7,ICD) 
NCDLI=NCELL(7,ICI) 
NC0LJ=NCELL(7,ICJ) 

IF(NCOLA.NE.NCOLB)THEN 
IF(NCOLA.NE.NCOLC)THEN 

IF(NCOLA.NE.NCOLD)THEN 
IF(NCOLA.NE.NCOLE)THEN 
IF(NCOLA.NE.NCOLF)THEN 
IF(NCOLA.NE.NCOLG)THEN 
IF(NCOLA.NE.NCOLH)THEN 
IF(NCOLA.NE.NCOLI)THEN 
IF(NCOLA.NE.NCOLJ)THEN 

NYELL0W=NYELL0W+1 
NC0L0R(4,NYELL0W)=I 
NCELL(7,I)=4 

I 
ENDIF 

7 CONTINUE 
Yellow 

DO 11 1=1,NEL 
IF(NCELL(7,I).EQ.O)THEN 

Faces of cell I 
NF1=NCELL(1,I) 
NF2=NCELL(2,I) 
NF3=NCELL(3,I) 

Adjacent cells to cell I 
ICB=NFACE(1,NF1) + NFACE(2,NF1) - I 
ICC=NFACE(1,NF2) + NFACE(2,NF2) - I 
ICD=NFACE(1,NF3) + NFAGE(2,NF3) - I 
NC0LA=4 

IF(ICB.LE.O)THEN 



www.manaraa.com

143 

NC0LB=0 
ELSE 
NC0LB=NCELL(7,ICB) 

ENDIF 
NC0LC=NCELL(7,ICC) 
NC0LD=NCELL(7,ICD) 

Check surrounding cells for color 
IF(NCOLA.NE.NCOLB)THEN 

IF(NCOLA.NE.NCOLC)THEN 
IF(NCOLA.NE.NCOLD)THEN 
NYELL0W=NYELL0W+1 
NC0L0R(4,NYELL0W)=I 
NCELL(7,I)=4 

jr 
ENDIF 

11 CONTINUE 
Red 

DO 10 1=1,NEL 
IF(NCELL(7,I).Eq.O)THEN 

Faces of cell I 
NF1=NCELL(1,I) 
NF2=NCELL(2,I) 
NF3=NCELL(3,I) 

Adjacent cells to cell I 
ICB=NFACE(1,NF1) + NFACE(2,NF1) - I 
ICC=NFACE(1,NF2) + NFACE(2,NF2) - I 
ICD=NFACE(1,NF3) + NFACE(2,NF3) - I 
NC0LA=3 

IF(ICB.LE.O)THEN 
NC0LB=0 

ELSE 
NC0LB=NCELL(7,ICB) 

ENDIF 
NC0LC=NCELL(7,ICC) 
NC0LD=NCELL(7,ICD) 

Check surrounding cells for color 
IF(NCOLA.NE.NCOLB)THEN 

IF(NCOLA.NE.NCOLC)THEN 
IF(NCOLA.NE.NCOLD)THEN 
NRED=NRED+1 
NC0L0R(3,NRED)=I 
NCELL(7,I)=3 

jr 
ENDIF 

10 CONTINUE 
Green 

DO 9 1=1,NEL 
IF(NCELL(7,I).Eq.O)THEN 



www.manaraa.com

144 

Faces of cell I 
NF1=NCELL(1,I) 
NF2=NCELL(2,I) 
NF3=NCELL(3,I) 

Adjacent cells to cell I 
ICB=NFACE(1,NF1) + NFACE(2,NF1) - I 
ICC=NFACE(1,NF2) + NFACE(2,NF2) - I 
ICD=NFACE(1,NF3) + NFACE(2,NF3) - I 
NC0LA=2 

IF(ICB.LE.O)THEN 
NC0LB=0 

ELSE 
NC0LB=NCELL(7,ICB) 

ENDIF 
NC0LC=NCELL(7,ICC) 
NC0LD=NCELL(7,ICD) 

Check surrounding cells for color 
IF(NCOLA.NE.NCOLB)THEN 
IF(NCOLA.NE.NCOLC)THEN 

IF(NCOLA.NE.NCQLD)THEN 
NGREEN=NGREEN+1 
NCOLOR(2,NGREEN)=I 
NCELL(7,I)=2 

jr 
ENDIF 

9 CONTINUE 
Blue 

DO 8 1=1,NEL 
IF(NCELL(7,I).Eq.0)THEN 

Faces of cell I 
NF1=NCELL(1,I) 
NF2=NCELL(2,I) 
NF3=NCELL(3,I) 

Adjacent cells to cell I 
ICB=NFACE(1,NF1) + NFACE(2,NF1) - I 
ICC=NFACE(1,NF2) + NFACE(2,NF2) - I 
ICD=NFACE(1,NF3) + NFACE(2,NF3) - I 
NC0LA=1 

IF(ICB.LE.O)THEN 
NC0LB=0 

ELSE 
NC0LB=NCELL(7,ICB) 

ENDIF 
NC0LC=NCELL(7,ICC) 
NC0LD=NCELL(7,ICD) 

Check surrounding cells for color 
IF(NCOLA.NE.NCOLB)THEN 

IF(NCOLA.NE.NCOLC)THEN 
IF(NCOLA.NE.NCOLD)THEN 



www.manaraa.com

145 

NBLUE=NBLUE+1 
NC0L0R(1,NBLUE)=I 
NCELL(7,I)=1 

jr 
ENDIF 

8 CONTINUE 

Faces of cell I 
NF1=NCELL(1,I) 
NF2=NCELL(2,I) 
NF3=NCELL(3,I) 

Adjacent cells to cell I 
ICB=NFACE(1,NF1) + NFACE(2,NF1) - I 
ICC=NFACE(1,NF2) + NFACE(2,NF2) - I 
ICD=NFACE(1,NF3) + NFACE(2,NF3) - I 

NC0LA=NCELL(7,I) 

IF(ICB.LE.O)THEN 
NC0LB=0 

ELSE 
NC0LB=NCELL(7,ICB) 

ENDIF 
NC0LC=NCELL(7,ICC) 
NC0LD=NCELL(7,ICD) 

Check surrounding cells for color 
IF(NCOLA.EQ.NC0LB)NCHECK=NCHECK+1 
IF(NCOLA.EQ.NCOLD)NCHECK=NCHECK+1 
IF(NCOLA.EQ.NCOLC)NCHECK=NCHECK+1 

12 CONTINUE 

IF(NCHECK.EQ.O)PRINT*,'Cell colorings are OK' 
IF(NCHECK.GT.0)PRINT*,'There are',ncheck, 

cells that are adjacent' 
K=1 , 
WRITE(55,140)NBLUE 
DO 100 1=1,NBLUE 
WRITE(55,150)NC0L0R(K, I) 

100 CONTINUE 
K=2 
WRITE(55,140)NGREEN 
DO 110 1=1,NGREEN 
WRITE(55,150)NC0L0R(K,I) 

110 CONTINUE 
K=3 , 
WRITE(55,140)NRED 
DO 120 1=1,NRED 
WRITE(55,150)NC0L0R(K,I) 

120 CONTINUE 



www.manaraa.com

146 

K=4 
WRITE(55,140)NYELLQW 
DO 130 I=1,NYELL0W 
WRITE(55,150)NC0L0R(K,I) 

130 CONTINUE 

140 FORMAT(I10) 
150 F0RMAT(I20) 

RETURN 



www.manaraa.com

147 

APPENDIX D. VISCOUS FLOW COMPUTER CODE 

This computer program solves the two-dimensional Navier-Stokes equations on 

a triangular unstructured grid. The flow input parameters are described in the sub­

routine INPUT. The triangular grid geometry and connectivity are read in as input 

in the subroutine GRIDIN. This code contains vectorization commands specific to 

the Cray computer. 

'call ill" 
OPEN(UNIT=1,STATUS='OLD',FILE='/wrk/aej orgen/plot.unsfs') 

,FILE='/wrk/aej orgen/input.viscous') 
,FILE='/wrk/aejorgen/output.viscous') 
,FILE=Vwrk/aejorgen/facell.data') 
,FILE='/wrk/aej orgen/node.data') 
,FILE='/wrk/aej orgen/color.map') 
,FILE='/wrk/aej orgen/unst.data') 
,FORM='UNFORMATTED', 

FILE='/wrk/aejorgen/rest.data') 
,FILE='/wrk/aej orgen/press.plot') 
,FILE='/wrk/aej orgen/error.file') 
,FILE='/wrk/aejorgen/res.plot') 

OPEN(UNIT=10,STATUS='OLD 
0PEN(UNIT=15,STATUS='OLD 
OPEN(UNIT=20,STATUS='OLD 
OPEN(UNIT=23,STATUS='OLD 
OPEN(UNIT=26,STATUS='OLD 
OPEN(UNIT=30,STATUS='OLD 
OPEN(UNIT=35,STATUS='OLD 

0PEN(UNIT=40,STATUS='OLD 
OPEN(UNIT=50,STATUS='OLD 
OPEN(UNIT=60,STATUS='OLD 

mh ÎI1ÏÎ 
CALL CONNECT 
IF(NS0LVE.Eq.2)CALL BMCO 
NC0UNT=0 
NRES=0 
IF(NRST.GT.O)THEN 
CALL REREAD 
ELSE 

initial conditions for fully developed flow(primitive) mm 
ENDIF 

ms? W 
NC0UNT=NC0UNT+1 



www.manaraa.com

148 

PRINT*,'TOTAL ITERATION COUNT =',NCOUNT 

 ̂IP 
LINITR=LINITR+1 
PRINT*,'Linearization iteration =',LINITR 

m ip= 
CALL ENSCALE 
call energy 
NR=0 
CALL SOLVE ^ , 
print*,'Ax-b=',RSq 

EU=ABS(XI(I,1)) 
EV=ABS(XI(I,2)) 
EP=ABS(XI(I,3)) 
ET=ABS(XI(I,4)) 
ERR=AMAX1(ERR,EU,EV,EP,ET) 
RESXI(I,NXM)=ABS(B(I,NXM)) 
RESXI(I,NYM)=ABS(B(I,NYM)) 
RESXI(I,MEN)=ABS(B(I,NEN)) 
RESXI(I,NCO)=ABS(B(I,NCO)) 
RES1=AMAX1(RES1,RESXI(I,NXM)) 
RES2=AMAX1(RES2,RESXI(I,NYM)) 
RES3=AMAX1(RES3,RESXI(I,NEN)) 
RES4=AMAX1(RES4,RESXI(I,NCO)) 

5 CONTINUE 
PRINT*,'LINEARIZATION ERROR =',ERR 
PRINT*,'X-MOMENTUM RESIDUAL =',RES1 
PRINT*,'Y-MOMENTUM RESIDUAL =',RES2 
PRINT*,'ENERGY RESIDUAL =',RES3 
PRINT*,'CONTINUITY RESIDUAL =',RES4 
IF(NCOUNT.EQ.2.OR.MOD(NCOUNT,10).EQ.0)THEN 

NRES=NRES+1 
RES5(1,NRES)=NC0UNT 
RES5(2,NRES)=AL0G10(RES4) 

ENDIF 
Update Solution Vector for Linearization 

DO 3 1=1,NCT 
UP(I)=UP(I)+XI(I,1) 
VP(I)=VP(I)+XI(I,2) 
PP(I)=PP(I)+XI(I,3) 
TP(I)=TP(I)+XI(I,4) 

3 CONTINUE 
IF(ERR.GT.l.D-5.AND.LINITR.LT.NLIN)GO TO 2 

Update Solution Vector for Next Time Step 
DO 4 1=1,NCT 
U(I)=UP(I) 

T(I)=TP(I) 



www.manaraa.com

149 

î gsrai 
IF(NRST,LT.2)CALL REWRITE 

m im 
CLDSE(l) 
CLOSE(IO) 
CL0SE(15) 
CLDSE(20) 
CL0SE(23) 
GL0SE(26) 
CL0SE(30) 
GL0SE(35) 
CL0SE(50) 
CL0SE(60) 

liSS" 

•DECK INPUT 
SUBROUTINE INPUT 
COMMON/WORD/METHOD 
CHARACTER*3 METHOD 

*CALL COMMZ 
C—INPUT FLOW CODE PARAMETERS AND GRID 
G Code Parameters: 
C NTTS = Number of Total Time Steps 
G NLIN = Number of Total Linearisation Iterations 
C NSI = Number of.Solver Iterations . 
C NRST = Restart file 0,l,2=0read-lwrite; Iread-lwrite; 
C Irçad-Owrite 
G NIBG = Inlet Boundary Condition 
C NEBC = Exit Boundary Condition 
C NSOLVE = Type of solver for Ax=b 
C NDAMP = Type of artificial damping 
C El = Damping coefficient for Laplacian 
C E3 = Damping coefficient for biharmonic 
C NXM = Variable solved for in the X-Momentum equation 1=U 
C NYM = Variable solved for in the Y-Momentum equation 2=V 
C NEN = Variable solved for in the Energy equation 3=P 
C NCO = Variable solved for in the Continuity equation 4=T 
C METHOD = Character variable that describes the solver 
C NPRET = Type of preconditioning 
C IGRID = Dimensional or nondimensional x, y coordinates 
C ^ _ 1-dim 0-non 
G Time Step Parameters: 
C GFL = Gourant, Friedrichs and Lewy number 
G NDTT = Minimum or local time step: 0,1 
G PSEUDO = Do not use or use pseudo time step: 0.0, 1.0 
G DTAU = Nondimensional pseudo time step 
C Fluid Parameters: 
G GPO = Specific Heat capacity at constant pressure 
C RO = Gas,Constant , 
C XMUO = Coefficient of viscosity 
G XLREF= Reference length in computing Reynolds number 



www.manaraa.com

150 

C PR = Prandtl Number 
C Through Flow Parameters: 
C PO = Inlet total pressure 
C TO = Inlet total temperature 
C PSRAT = exit static pressure ratio (exit static:inlet total) 
C UT = total velocity 
C UTANG = angle of total velocity 
C Solid Wall Parameters: 
C TW = Temperature of Wall 

C--NAMELIST INPUT 
NAMELIST /NLl/ NTTS,NLIN,NSI,NRST,NIBC,NEBC,NSOLVE, 

. NDAMP,E1,E3,NXM,NYM,NEN,NCO,METHOD,NPRET,KBV,IGRID 
NAMELIST /NL2/ CFL,NDTT,PSEUDO,DTAU 
NAMELIST /NL3/ CPO,RO,XMUO,XLREF,PR 
NAMELIST /NL4/ PO,TO,PSRAT,UT,UTANG 
NAMELIST /NL5/ TW 
READ(10,NL1) 
READ(10,NL2) 
READ(10,NL3) 
READ(10,NL4) 
READ(10,NL5) 

C--ECHO INPUT 
WRITE(15,100) 
WRITE(15,102) 
WRITE(15,105)NTTS 
WRITE(15,107)NLIN 
WRITE(15,108)NSI 
WRITE(15,109)NRST 
WRITE(15,110)CFL 
WRITE(15,115)NIBC 
WRITE(15,120)NEBC 
WRITE(15,121)NS0LVE 
WRITE(15,122)NDAMP 
WRITE(15,131)E1 
WRITE(15,132)E3 
WRITE(15,133)NXM,NYM,NEN,NCO 
WRITE(15,124) 
CVO=CPO-RO 
G=CPO/CVO 
WRITE(15,125)CP0 
WRITE(15,126)CV0 
WRITE(15,128)G 
WRITE(15,130)RO 
WRITE(15,135)XMU0 
WRITE(15,137)XLREF 
WRITE(15,140)PR 
WRITE(15,142) 
WRITE(15,145)P0 
WRITE(15,150)T0 
WRITE(15,155)PSRAT 
WRITE(15,160)UT 
WRITE(15,165)UTANG 



www.manaraa.com

151 

WRITE(15.167) 
WRITE(15,170)TW 
CALL GRIDIN 

—COMPUTE QUANTITIES FOR NONDIMENSIONALIZATION 
RHOO=PO/(RO*TO) 
AO=SQRT(G*RO*TO) 
UO=UT 
RENO=RHOO*UO*XLREF/XMUO 
XMACHO=UT/AO 
WRITE(15,175) 
WRITE(15,185)RH00 
WRITE(15,190)U0 
WRITE(15,195)REN0 
WRITE(15,200)XMACHO 
Nondimensionalize geometric quantities 
at each node 
XD=1.0 
IF(IGRID.EQ.1)XD=XLREF 
WRITE(15,210) 
DO 2 1=1,NNT 
X(I)=X(I)/XD 
Y(I)=Y(I)/XD 
WRITE(15,215)1,X(I),Y(I) 

2 CONTINUE 

100 F0RMAT('1',2X,'INPUT TO UNSTRUCTURED FLOW CODE') 
102 FORMAT(//,5X,'CODE PARAMETERS',/) 
105 FORMATAIOX,'Number of Total Time Steps(NTTS) 

=',I11) 
107 FORMAT(1OX,'Number of Linearization Iterations(N 

.'LIN) =',I11) 
108 FORMAT(lOX,'Number of Solver Iterations(NS', 

. ' D  = ' , I 1 1 )  
109 FORMAT(lOX,'Read restart file l=yes 0=no (NRST) 

=',I11) 
110 FORMAT(lOX,'Courant, Friedrichs, and Lewy number 

.'(CFL) =',F11.3) 
115 FORMAT(lOX,'Inlet Boundary Condition(NIBC) 

=',I11) 
120 FORMAT(lOX,'Exit Boundary Condition(NEBC) 

=',I11) 
121 F0RMAT(10X,'Type of solver for Ax=b(NSOLVE) 

=',I11) 
122 FORMAT(1OX,'Type of artificial damping(NDAMP) 

=',I11) 
131 F0RMAT(10X,'Damping coefficient for Laplacian(El 

.') =',F11.3) 
132 FORMAT(1OX,'Damping coefficient for biharmonic(E 

.'3) =',F11.3) 
133 FQRMAT(1OX,'Order of equations solved for U, V, 

.'P, T =',4I5) 
124 FORMAT(//,5X,'FLUID PARAMETERS',/) 



www.manaraa.com

152 

125 FORMAT(lOX,'Specific Heat Capacity at constant P 
.'(CPO) =',F11.3) 

126 FORMAT(lOX,'Specific Heat Capacity at constant V 
.'(CVO) =',F11.3) 

128 F0RMAT(10X,'Ratio of Specific Heats(G) 
=',F11.3) 

130 FORMAT(1OX,'Gas Constant(RO) 
=',F11.3) 

135 FORMATClOX,'Coefficient of Viscosity(XMUQ) 
.' =',1PE11.4) 

137 FORMATClOX,'Reference length for Reynolds number 
.'(XLREF)=',F11.3) 

140 FORMATClOX,'Prandtl NumberCPR) 
=',F11.3) 

142 FORMATC//,5X,'THROUGH FLOW PARAMETERS',/) 
145 FORMATClOX,'Inlet Total Pressure(PO) 

=',1PE11.4) 
150 FORMATClOX,'Inlet Total TemperatureCTO) 

=',F11.3) 
155 FORMATClOX,'Exit Static Pressure RatioCPSRAT) 

=',F11.3) 
160 FORMATClOX,'Inlet Total Velocity(UT) 

=',F11.3) 
165 FORMATClOX,'Inlet Total Velocity AngleCUTAMG) 

=',F11.3) 
167 FORMATC//,5X,'SOLID WALL PARAMETERS',/) 
170 FORMATClOX,'Wall TemperatureCTW) 

=',F11.3) 
175 FORMATC//,5X,'N0NDIMENSI0NAL QUANTITIES',/) 
180 FORMATClOX,'Reference LengthCL) 

=',F11.3) 
185 FORMATClOX,'Reference DensityCRHOO) 

=',F11.3) 
190 FORMATClOX,'Reference VelocityCUO) 

=',F11.3) 
195 FORMATClOX,'Reynolds NumberCRENO) 

.' =',1PE11.4) 
200 FORMATClOX,'Mach NumberCXMACHO) 

=',F11.5) 
210 F0RMATC//,5X,'NODE',11X,'X',15X,'Y',/) 
215 F0RMATC2X,I6,5X,F11.5,5X,F11.5) 

RETURN 
END 

*DECK GRIDIN 
.CALL ar™" 
C—Read in grid data 

C READ IN^FACE^DATA " 



www.manaraa.com

153 

READ(20,*) 
READ(20,*) 
READ(20,*)NFT 
READ(20,*) 
DO 1 1=1,NET 
READ(20,*)NDUM,NFACE(1,I),NFACE(2,I) 

C—--READ^IN^CELL DATA 
READ(20,*) 
READ(20,*) 
READ(20,*)NCT 
READ(20,*) 
DO 2 1=1,NOT 
READ(20,*)NDUM,(NCELL(K,I),K=1,6) 

2 CONTINUE 
C READ IN NODE DATA 

READ(23,*) 
READ(23,*) 
READ(23,*)NNT 
READ(23,*) 
DO 3 1=1,NNT 
READ(23,*)NDUM,X(I),Y(I) 

3 CONTINUE 
C INLET CELLS(Must be determined to specify inlet boundary 
C conditions) 

NILT=0 
DO 4 1=1,NFT 
IF(NFACE(1,I) .EQ.-DTHEN 
NILT=NILT+1 
NCELLIL(NILT)=NFACE(2,I) 

ELSE 
IF(NFACE(2,I) .EQ.-DTHEN 
NILT=NILT+1 
NCELLIL(NILT)=NFACE(1,I) 

ENDIF 
ENDIF 

^ 4 CONTINUE , ^ 
C Input 4 color cell information 
c DO 5 K=l,4 
c READ(26,*)NRGBY(K) 
c NCLOOP=NRGBY(K) 
c DO 5 N=1,NCLD0P 
c READ(26,*)NC0L0R(K,N) 
c 5 CONTINUE 

RETURN 
END 

*DECK INITV 
.CALL 
C Input ordering array for ordering extra viscous triangles 

NPERM(1,1)=1 



www.manaraa.com

154 

NPERM(1,2)=2 
NPERM(1,3)=3 
NPERM(2,1)=2 
NPERM(2,2)=3 
NPERM(2,3)=1 
NPERM(3,1)=3 
NPERM(3,2)=1 
NPERM(3,3)=2 

*DECK CONNECT 

DO 1 1=1,NCT 
ICA=I 

C—FACES OF CELL I 
NF1=NCELL(1,I) 
NF2=NCELL(2,I) 
NF3=NCELL(3,I) 

C NUMBER OF CELL ADJACENT TO CELL I ACROSS FACE A-B 
ICB=NFACE(1,NF1) + NFACE(2.NF1) - I 

C NUMBER OF CELL ADJACENT TO CELL I ACROSS FACE B-C 
ICC=NFACE(1,NF2) + NFACE(2,NF2) - I 

C NUMBER OF CELL ADJACENT TO CELL I ACROSS FACE C-A 
ICD=NFACE(1,NF3) + NFACE(2,NF3) - I 

C Find Cell #'s of E, F, G, H, I, J 
C Faces of Cell B 

NFS1=NCELL(1,ICB) 
NFS2=NCELL(2,ICB) 
NFS3=NCELL(3,ICB) 

C Cells surrounding cell B (E, F) 
C Determine cell numbers in the order A-E-F 

ICS(1)=NFACE(1,NFS1)+NFACE(2,NFS1)-ICB 
ICS(2)=NFACE(1,NFS2)+NFACE(2,NFS 2)-1CB 
ICS(3)=NFACE(1,NFS3)+NFACE(2,NFS3)-ICB 
NFA=INT(1./C0SH(FL0AT(ICS(1)-ICA))) 
NFB=INT(1./C0SH(FL0AT(ICS(2)-ICA))) 
NFC=INT(1./COSH(FLOAT(ICS(3)-ICA))) 
LAB=NFA*1 + NFB*2 + NFC*3 
LAD=NPERM(LAB,2) 
LDB=NPERM(LAB,3) 

ICE=ICS(LAD) 
ICF=ICS(LDB) 

C Faces of Cell C 
NFS1=NCELL(1,ICC) 
NFS2=NCELL(2,ICC) 
NFS3=NCELL(3,ICC) 

C Cells surrounding cell C (G, H) 
C Determine cell numbers in the order A-G-H 



www.manaraa.com

155 

ICS(1)=NFACE(1,NFS1)+NFACE(2,NFS1)-ICC 
ICS(2)=NFACE(1,NFS2)+NFACE(2,NFS2)-ICC 
ICS(3)=NFACE(1,NFS3)+NFACE(2,NFS3)-ICC 
NFA=INT(1./C0SH(FL0AT(ICS(1)-ICA))) 
NFB=INT(1./COSH(FLOATCICS C2)-ICA))) 
NFC=INT(1./COSH(FLOAT(ICS(3)-ICA))) 
LAB=NFA*1 + NFB*2 + NFC*3 
LAD=NPERM(LAB,2) 
LDB=NPERM(LAB,3) 

ICG=ICS(LAD) 
ICH=ICS(LDB) 

C Faces of Cell D 
NFS1=NCELL(1,ICD) 
NFS2=NCELL(2,ICD) 
NFS3=NCELL(3,ICD) 

C Cells surrounding cell D (I, J) 
C Determine cell numbers in the order A-I-J 

ICS(1)=NFACE(1,NFS1)+NFACE(2,NFS1)-ICD 
ICS(2)=NFACE(1,NFS2)+NFACE(2,NFS2)-ICD 
ICS(3)=NFACE(1,NFS3)+NFACE(2,NFS3)-ICD 
NFA=INT(1./COSH(FLOAT(ICS(1)-ICA))) 
NFB=INT(1./C0SH(FL0AT(ICS(2)-ICA))) 
NFC=INT(1./COSH(FLOAT(ICS(3)-ICA))) 
LAB=NFA*1 + NFB*2 + NFC*3 
LAD=NPERM(LAB,2) 
LDB=NPERM(LAB,3) 

ICI=ICS(LAD) 
ICJ=ICS(LDB) 

C Save column numbers for SOLVER 
NUMEL(I,1)=ICA 
NUMEL(I,2)=ICB 
NUMEL(I,3)=ICC 
NUMEL(I,4)=ICD 

IF(ICB.GT.O)THEN 
NUMEL(I,5)=ICE 
NUMEL(I,6)=ICF 

ELSE 

NUMEL(I,7)=ICG 
NUMEL(I,8)=ICH 
NUMEL(I,9)=ICI 
NUMEL(I,10)=ICJ 

1 CONTINUE 

*DECK INITFD 



www.manaraa.com

156 

.CALL gcr™ 

C Initial Conditions computed for fully developed flow 
C U, V, P, T 

^ 2!&=t=§o?|itions^ 

U?ANG=UTANG*?ORAD^" 
GM=G-1.0 
TS=T0-.5*UT**2/CP0 
CS=SQRT(G*RD*TS) 
XMACHT=UT/CS 
PS=PO*(1.0+GM/2*XMACHT**2)**(-G/GM) 

C Channel flow or uniform periodic flow 
c h=1.0 
c h2=h/2. 
c DO 1 n=l,NCT 
c nl=ncell(4,n) 
c n2=ncell(5,n) 
c n3=ncell(6,n) 
c ycav=(y(nl)+y(n2)+y(n3))/3. 
C Fully developed flow 
c u(n)=ut*(l.-(ycav-h2)**2/h2**2) 
c u(n)=ut*(l.-(ycav)**2/h2**2) 
C Uniform flow 
c u(n)=ut*cos(utang) 
c V(N)=ut*sin(utang) 
c P(N)=PS 
c T(N)=TS 
c 1 CONTINUE 
C Sudden expansion — fully developed 

ycl=l.5 
DO 2 N=1,NCT 
nl=ncell(4,n) 
n2=ncell(5,n) 
n3=ncell(6,n) 
xcav=(x(nl)+x(n2)+x(n3))/3. 
ycav=(y(nl)+y(n2)+y(n3))/3. 
if (ycav. le. yd) then 
if(xcav.le.1.0)then 

c U(N)=UT*SIN(pie*(ycav-1.0)) 
U(N)=UT*(1.-(ycav-1.5)**2/.25) 

else 
c U(N)=UT/9.*SIN(pie*ycav/3.) 

U(N)=UT/9.*(!.-(ycav-1.5)**2/2.25) 
endif 

else 
if(xcav.le.1.0)then 

c U(N)=UT*SIN(pie*sqrt((ycav-2.)**2)) 
U(N)=UT*(1.-(ycav-1.5)**2/.25) 

else 
c U(N)=UT/9.*SIN(pie*sqrt((ycav-3.)**2)/3.) 



www.manaraa.com

157 

U(N)=UT/9.*(!.-(ycav-1.5)**2/2.25) 
endif 

endif 
V(N)=0.0 
P(N)=PS 
T(N)=TS 

2 CONTINUE 
C Backward facing step — fully developed 
c hl=.5 
c h2=l.9423/2. 

i 
c nl=ncell(4,n) 
c n2=ncell(5,n) 
c n3=ncell(6,n) 
c xcav=(x(nl)+x(n2)+x(n3))/3. 
c ycav=(y(nl)+y(n2)+y(n3))/3. 
c if(xcav.le.1.0)then 
c U(N)=UT*(1.-(ycav-hl2)**2/hl**2) 
c else 
c U(N)=UT/1.9423*(1.-(ycav-h22)**2/h2**2) 
c endif 
c V(N)=0.0 
c P(N)=PS 
c T(N)=TS 
c 2 CONTINUE 
C Celtic valve fully developed 
c ycl=0.0 
c DO 3 N=1,NCT 
c nl=ncell(4,n) 
c n2=ncell(5,n) 
c n3=ncell(6,n) 
c xcav=(x(nl)+x(n2)+x(n3))/3. 
c ycav=(y(nl)+y(n2)+y(n3))/3. 
c if(xcav.le.-1.414)then 
c u(n)=ut*(l.-(ycav)**2/0.5**2) 
c else 
c U(N)=UT 
c endif 
c V(N)=0.0 
c P(N)=PS 
c T(N)=TS 
c 3 CONTINUE 
C Corners flow fully developed 
c xcll=1.5 
c ycll=5.5 
c xcl2=3.5 
c ycl2=3.5 
c DO 4 N=1,NCT 
c nl=ncell(4,n) 
c n2=ncell(5,n) 
c n3=ncell(6,n) 
c xcav=(x(nl)+x(n2)+x(n3))/3. 



www.manaraa.com

158 

c ycav=(y(nl)+y(n2)+y(n3))/3. 
c if(ycav.gt.xcav+4.)then 
c if(ycav.le.ycll)then 
c U(N)=UT*SIN(pie*(ycav-ycll+0.5) ) 
c V(N)=0.0 
c else 
c U(N)=UT*SIN(pie*sqrt((ycav-ycll-0.5)**2) ) 
c V(N)=0.0 
c endif 
c else 
c if(ycav.gt.xcav+2.)then 
c if(xcav.le.xcll)then 
c U(N)=0.0 
c V(N)=-UT*SIN(pie*(xcav-xcll+0.5)) 
c else 
c U(N)=0.0 
c V(N)=-UT*SIN(pie*sqrt((xcav-xcll-0.5)**2)) 
c endif 
c else 
c if(ycav.gt.xcav)then 
c if(ycav.le.ycll)then 
c U(N)=UT*SIN(pie*(ycav-ycl2+0.5) ) 
c V(N)=0.0 
c else 
c U(N)=UT*SIN(pie*sqrt((ycav-ycl2-0.5)**2) ) 
c V(N)=0.0 
c endif 
c else 
c if(xcav.le.xcll)then 
c U(N)=0.0 
c V(N)=-UT*SIN(pie*(xcav-xcl2+0.5)) 
c else 
c U(N)=0.0 
c V(N)=-UT*SIN(pie*sqrt((xcav-xcl2-0.5)**2)) 
c endif 
c end^f 
c endif 
c endif 
c P(N)=PS 
c T(N)=TS 
c 4 CONTINUE 
C Compute inlet conditions along boundary A-B for subsonic or 
C supersonic boundary conditions 

DO 10 I=1,NILT 
N=NCELLIL(I) 
UI(N)=U(N) 
VI(N)=V(N) 
PI(N)=PS 
TI(N)=TS 

10 CONTINUE 

c PEXIT=PSRAT*PO 
C Freestream conditions(subsonic flow) 

PEXIT=PS 



www.manaraa.com

159 

C Sutherland's Law Constants(dimensional) 
C Air at moderate temperatures(Metric units) 

C Initialize A matrix and b vector 
DO 25 J=0,10 
DO 25 1=0,NOT 
A(I,J,1,1)=0.0 
A(I,J,1,2)=0.0 
A(I,J,1,3)=0.0 
A(I,J,1,4)=0.0 
A(I,J,2,1)=0.0 
A(I,J,2.2)=0.0 
A(I,J,2,3)=0.0 
A(I,J,2,4)=0.0 
A(I,J,3,1)=0.0 
A(I,J,3,2)=0.0 
A(I,J,3,3)=0.0 
A(I,J,3,4)=0.0 
A(I,J,4,1)=0.0 
A(I,J,4,2)=0.0 
A(I,J,4,3)=0.0 
A(I,J,4,4)=0.0 

25 CONTINUE 
DO 30 1=0,NCT 
B(I,1)=0.0 
B(I,2)=0.0 
B(I,3)=0.0 
B(I,4)=0.0 

30 CONTINUE 

IS"™ 

•DECK NONDIM 
.CALL MOMOI" 

C Nondimensionalize flow quantities 
C in each cell 

WRITE(15,100) 
CP=CP0*T0/U0**2 
R=R0*T0/U0**2 
DO 1 1=1,NCT 
U(I)=U(I)/UO 
V(I)=V(I)/UO 
P(I)=P(I)/RH00/U0**2 
T(I)=T(I)/TO 
WRITE(15,105)1,U(I),V(I),P(I),T(I) 

1 CONTINUE 
C Nondimensionalize inlet conditions for subsonic and 



www.manaraa.com

160 

supersonic flow BC's at side A-B 
DO 2 I=1,NILT 
N=NCELLIL(I) 
UI(N)=UI(N)/UO 
VI(N)=VI(N)/UO 
PI(N)=PI(N)/RH00/U0**2 
TI(N)=TI(N)/TO 

2 CONTINUE 
P0I=P0/RH00/U0**2 
Nondimensionalize wall temperature for solid wall BC 

TW=TW/TO 
Nondimensionalize exit pressure for subsonic flow BC 

PEXIT=PEXIT/RH00/U0**2 
Initialize nondimensional provisional quantities 

DO 3 1=1,NCT 
UP(I)=U(I) 
VP(I)=V(I) 
PP(I)=P(I) 
TP(I)=T(I) 

3 CONTINUE 
Sutherland's Law Constants nondimensionalized 

SC1=SC1*SQRT(T0)/XMUO 
SC2=SC2/T0 

100 FORMAT(///,IX,'NONDIMENSIONALIZED QUANTITIES',//, 
. 5X.'CELL',11X,'U',15X,'V',15X,'P',15X,'T',/) 

105 F0RMAT(2X,I6,5X,F11.5,5X,F11.5,5X,F11.5,5X,F11 .5)  

r 

*DECK VOLUME 
.CALL 

C Compute Volume(VOL(I)) of cell 

WRITE(15,100) 
DO 1 1=1,NCT 

C—NODES OF CELL I 
N1=NCELL(4,I) 
N2=NCELL(5,I) 
N3=NCELL(6,I) 

C NODES OF FACE A-B ARE N1 AND N2 
DXAB=X(N2)-X(N1) 
DYAB=Y(N2)-Y(N1) 

C NODES OF FACE B-C ARE N2 AND N3 
DXBC=X(N3)-X(N2) 
DYBC=Y(N3)-Y(N2) 

C NODES OF FACE C-A ARE N3 AND N1 



www.manaraa.com

161 

DXCA=X(N1)-X(N3) 
DYCA=Y(N1)-Y(N3) 

C CALCULATE AREA OF CELL I 
AB=SQRT(DXAB**2+DYAB**2) 
BC=SQRT(DXBC**2+DYBC**2) 
CA=SQRT(DXCA**2+DYCA**2) 
SABC=.5*(AB+BC+CA) 
VOL(I)=SQRT(SABC*(SABC-AB)*(SABC-BC)*(SABC-CA)) 
WRITE(15,110)1,VOL(I) 

1 CONTINUE 

100 FORMAT(//,5X,'VOLUME OF CELLS',//,4X,'CELL', 
.IIX,'VOLUME',/) 

110 F0RMAT(I6,10X,1PE11.5) 
RETURN 
END 

*DECK TIMST 
, SUBROUTINE TIMST 

*CALL COMMZ 

C Time step based on edge velocities (average of adjacent cell 
C quantities) and edge geometry 

DO 1 1=1,NCT 

C Determine adjacent cell 
ICA=I 
ICB=NUMEL(I,2) 

IF(ICB.LE.0)THEN 

ICC=NUMEL(I,3) 
ICD=NUMEL(I,4) 

C—NODES OF CELL I 
N1=NCELL(4,I) 
N2=NCELL(5,I) 
N3=NCELL(6,I) 

C Compute average U, V, P, T. 

UAB=.5*(U(ICA)+U(ICB)) 
VAB=.5*(V(ICA)+V(ICB)) 
PAB=.5*(P(ICA)+P(ICB)) 
TAB=.5*(T(ICA)+T(ICB)) 

UBC=.5*(U(ICA)+U(ICC)) 
VBC=.5*(V(ICA)+V(ICC)) 
PBC=.5*(P(ICA)+P(ICC)) 



www.manaraa.com

162 

TBC=.5*(T(ICA)+T(ICC)) 

UCA=.5*(U(ICA)+U(ICD)) 
VCA=.5*(V(ICA)+V(ICD)) 
PCA=.5*(P(ICA)+P(ICD)) 
TCA=.5*(T(ICA)+T(ICD)) 

Compute DELTA(x), DELTA(y) on each edge 
—NODES OF FACE A-B ARE N1 AND N2 
DXAB=X(N2)-XCN1) 
DYAB=Y(N2)-Y(N1) 

—NODES OF FACE B-C ARE N2 AND N3 
DXBC=X(N3)-X(N2) 
DYBC=Y(N3)-Y(N2) 

—NODES OF FACE C-A ARE N3 AND N1 
DXCA=X(N1)-X(N3) 
DYCA=Y(N1)-Y(N3) 

Compute (speed of sound)**2 for each edge 
CCAB=G*R*TAB 
CCBC=G*R*TBC 
CCCA=G*R*TCA 
Compute velocity and speed of sound across each edge AB, 
BC, CA; i.e. the contravariant component of velocity 
and the speed of sound. 
QSAB=DYAB*UAB-DXAB*VAB 
QSBC=DYBC*UBC-DXBC*VBC 
QSCA=DYCA*UCA-DXCA*VCA 

CSAB=CCAB*(DXAB**2+DYAB**2) 
CSBC=CCBC*(DXBC**2+DYBC**2) 
CSCA=CCCA*(DXCA**2+DYCA»*2) 

AAB=ABS(QSAB)+SQRT(CSAB) 
ABC=ABS(QSBC)+SQRT(CSBC) 
ACA=ABS(QSCA)+SQRT(CSCA) 

Sum reciprocal of time step of each face and temporarily 
stored in dt(i) 

DT(I)=AAB+ABC+ACA 

Actual time step CFL condition is multiplied when integrating 
DT(I)=V0L(I)/DT(I) 
CONTINUE 

Compute minimum time step 
DTMIN=1.E6 
IF(NDTT.Eq.O)THEN 
DO 2 1=1,NCT 
DTMIN=AMIN1(DTMIN,DT(I)) 
CONTINUE 



www.manaraa.com

163 

ENDIF 

WRITE(15,100) 
DO 3 1=1,NCT 
WRITE(15,105)1,DT(I) 

3 CONTINUE 

WRITE(15,110)DTMIN 

100 FORMAT(//,5X,'TIME STEP',/,5X,'CELLM3X,'DT',/) 
105 F0RMAT(5X,I6,10X,1PE11.5) 
110 F0RMAT(///,5X,'MINIMUM TIME STEP = ',1PE11.5) 

RETURN 

•DECK INVIS 
.CALL 

DO 1 1=1,NCT 

DELT=CFL*AMIN1(DT(I),DTMIN) 
DELT=1.E6 
DTAU=CFL*AMIN1(DT(I),DTMIN) 
ICA=I , ^ 
ICB=NUMEL(I,2) 
ICC=NUMEL(I,3) 
ICD=NUMEL(I,4) 

C—NODES OF CELL I 
N1=NCELL(4,ICA) 
N2=NCELL(5,ICA) 
N3=NCELL(6,ICA) 

C NODES OF FACE A-B ARE N1 AND N2 
DXAB=X(N2)-X(N1) 
DYAB=Y(N2)-Y(N1) 

C NODES OF FACE B-C ARE N2 AND N3 
DXBC=X(N3)-X(N2) 
DYBC=Y(N3)-Y(N2) 

C NODES OF FACE C-A ARE N3 AND N1 
DXCA=X(N1)-X(N3) 
DYCA=Y(N1)-Y(N3) 

C AREA OF CELL I 
S=VOL(ICA) 

C VARIABLES OF CELL A, B, C, AND D 
C CELL A 

UA=U(ICA) 
VA=VfICA) 
PA=P(ICA) 
TA=T(ICA) 

C PROVISIONAL VALUES 
UPA=UP(ICA) 
VPA=VP(ICA) 
PPA=PP(ICA) 



www.manaraa.com

164 

TPA=TP(ICA) 
xyb=l. 
xywa=0.0 
xyia=0.0 
xyea=0.0 

C CELL B 
if(icb.gt.O)then 
UPB=UP(ICB) 
VPB=VP(ICB) 
PPB=PP(ICB) 
TPB=TP(ICB) 
else 
if(icb.eq.O)then 
xyb=0.0 
xywa=l.0 

C VISCOUS WALL BOUNDARY CONDITION ON FACE AB 

else 
C INLET 

if(icb.eq.-l)then 
xyb=0.0 
xyia=l.0 
if(nibc.eq.0)then 
UPB=2.*UI(ICA)-UPA 
VPB=2.*VI(ICA)-VPA 
PPB=PPA 
TPB=2.*TI(ICA)-TPA 
DPC=1. 
else 
if(nibc.eq.1)then 

C Riemann invariant formulation 
GM=G-1. 
GP=G+1. 
VAB=VI(ICA) 
CSA=SqRT(G*R*TA) 
RMIN=UA-2.*CSA/GM 
UAB=(GM*RMIN+SQRT(4.*GP*CP-2.*(GP*VAB**2+GM*RMIN**2)))/GP 
UVSQ=UAB**2+VAB**2 
TAB=1.-UVSQ/(2.*CP) 
CSABSQ=G*R*TAB 
XMABSq=UVSQ/CSABSQ 
GGM=G/GM 
PAB=POI*(1.+.5*GM*XMABSQ)**(-GGM) 
UPB=2.*UAB-UPA 
VPB=2.*VAB-VPA 
îgg: 
DPC=1. 
else 
if(nibc.eq.2)then 

C SUPERSONIC INLET BOUNDARY CONDITION ON FACE AB 
C Set quantities in cell B such that side A-B of cell A 
C holds the set boundary conditions. 

UPB=2.*UI(ICA)-UPA 



www.manaraa.com

165 

VPB=2.*VI(ICA)-VPA 
PPB=2.*PI(ICA)-PPA 
TPB=2.*TI(ICA)-TPA 

qi;'-
ISâil 

c ex!t^® 
if(icb.eq.-2)then 
xyb=0.0 
xyea=l.0 
if(nebc.eq.1)then 

C SUBSONIC EXIT BOUNDARY CONDITION ON FACE AB 
UPB=UP(ICA) 
VPB=VP(ICA) 
PPB=2.*PEXIT-PPA 
TPB=TP(ICA) 
DPC=1. 
else 
if(nebc.eq.2)then 

C SUPERSONIC EXIT BOUNDARY CONDITION ON FACE AB 
UPB=UP(ICA) 
VPB=VP(ICA) 
PPB=PP(ICA) 
TPB=TP(ICA) 

lii'-
SSi!| 

c 
UPC=UP(ICC) 
VPC=VP(ICC) 
PPC=PP(ICC) 
TPC=TP(ICC) 

C CELL D 
UPD=UP(ICD) 
VPD=VP(ICD) 
PPD=PP(ICD) 
TPD=TP(ICD) 

C—CONTINUITY EQUATION 

C DELTA(U) 
C A 

A(I,1,NC0,1)=0.0 
. -xywa*.5*PPB/TPB*DYAB 
. -xyia*.5*PPB/TPB*DYAB 
. +xyea*.5*PPB/TPB*DYAB 

C DELTA(V) 
C A 

A(I,1,NC0,2)=0.0 
. +xywa*.5*PPB/TPB*DXAB 
. +xyia*.5*PPB/TPB*DXAB 
. -xyea*.5*PPB/TPB*DXAB 



www.manaraa.com

166 

C DELTA(P) 
C A 

A(I,1,NCO,3)=S/TPA/DELT 
. +xywa*.5* (UPB*DYAB-VPB*DXAB)/TPB 
. +xyia*.5*DPC*(UPB*DYAB-VPB*DXAB)/TPB 
. -xyea*.5*DPC*(UPB*DYAB-VPB*DXAB)/TPB 

C Pseudo time term 

A(I,1,NC0,3)=A(I,1,NC0,3) 
+PSEUDO/DTAU*R*S/TPA 

C DELTA(T) 
C A 

A(I,1,NC0,4)=-S*PPA/TPA**2/DELT 
. -xywa*.5*PPB/TPB**2*(UPB*DYAB-VPB*DXAB) 
. +xyia*.5*PPB/TPB**2*(UPB*DYAB-VPB*DXAB) 
. -xyea*.5*PPB/TPB**2*(UPB*DYAB-VPB*DXAB) 

C Pseudo time term 

A(I,1,NC0,4)=A(I,1,NC0,4) 
-PSEUD0/DTAU*S*PPA/TPA**2 

C DELTA(U) 
C B 

A(I,2,NCO,1)=xyb*.5*PPB/TPB*DYAB 

C DELTA(V) 
C B 

A(I,2,NCO,2)=-xyb*.5*PPB/TPB*DXAB 

C DELTA(P) 
C B 

A(I,2,NCO,3)=xyb*.5*(UPB*DYAB-VPB*DXAB)/TPB 

C DELTA(T) 
C B 

A(I,2,NCO,4)=-xyb*.5*PPB/TPB**2*(UPB*DYAB-VPB*DXAB) 

C DELTA(U) 
C C 

A(I,3,NC0,1)=.5*PPC/TPC*DYBC 

C DELTA(V) 
C C 

A(I,3,NCO,2)=-.5*PPC/TPC*DXBC 

C DELTA(P) 
C C 

A(I,3,NCO,3)=.5*(UPC*DYBC-VPC*DXBC)/TPC 

C DELTA(T) 



www.manaraa.com

167 

C C 

A(I,3,NCO,4)=-.5*PPC/TPC**2*(UPC*DYBC-VPC*DXBC) 

C DELTA(U) 
C D 

A(I,4,NC0,1)=.5*PPD/TPD*DYCA 

C DELTA(V) 
C D 

A(I,4,NCO,2)=-.5*PPD/TPD*DXCA 

C DELTA(P) 
C D 

A(I,4,NCO,3)=.5*(UPD*DYCA-VPD*DXCA)/TPD 

C DELTA(T) 
C D 

A(I,4,NC0,4)=-.5*PPD/TPD**2*(UPD*DYCA-VPD*DXCA) 

C RHS 
C 

B(I,NCO)=-(S*(PPA/TPA-PA/TA)/DELT 
. +.5*(PPB*UPB/TPB*DYAB+PPC*UPC/TPC*DYBC+PPD*UPD/TPD*DYCA 

-PPB*VPB/TPB*DXAB-PPC*VPC/TPC*DXBC-PPD*VPD/TPD*DXCA)) 

C--X MOMENTUM EQUATION 
C 
C DELTA(U) 
C A 

ACI,1,NXM,1)=S*PPA/TPA/DELT 
. -xywa*.5*PPB/TPB*(2.*UPB*DYAB-VPB*DXAB) 
. -xyia*.5*PPB/TPB*(2.*UPB*DYAB-VPB*DXAB) 
. +xyea*.5*PPB/TPB*(2.*UPB*DYAB-VPB*DXAB) 

C Pseudo time terra 

A(I,1,NXM,1)=A(I,1,NXM,1) 
+PSEUDO/DTAU*S*PPA/TPA 

C DELTA(V) 
C A 

A(I,1,NXM,2)=0.0 
. +xywa*.5*PPB*UPB/TPB*DXAB 
. +xyia*.5*PPB*UPB/TPB*DXAB 
. -xyea*.5*PPB*UPB/TPB*DXAB 

C DELTA(P) 
G A 

A(I,1,NXM,3)=S*UPA/TPA/DELT 
. +xywa*.5* (UPB/TPB*(UPB*DYAB-VPB*DXAB)+R*DYAB) 
. +xyia*.5*DPC*(UPB/TPB*(UPB*DYAB-VPB*DXAB)+R*DYAB) 
. -xyea*.5*DPC*(UPB/TPB*(UPB*DYAB-VPB*DXAB)+R*DYAB) 



www.manaraa.com

168 

C Pseudo time term 

A(I,1,NXM,3)=A(I,1,NXM,3) 
+PSEUDO/DTAU*R*S*UPA/TPA 

C DELTA(T) 
C A 

A(I,1,NXM,4)=-S*PPA*UPA/TPA**2/DELT 
. -xywa*.5*PPB*UPB/TPB**2*(UPB*DYAB-VPB*DXAB) 
. +xyia*.5*PPB*UPB/TPB**2*(UPB*DYAB-VPB*DXAB) 
. -xyea*.5*PPB*UPB/TPB**2*(UPB*DYAB-VPB*DXAB) 

C Pseudo time term 

A(I,1,NXM,4)=A(I,1,NXM,4) 
-PSEUD0/DTAU*S*PPA*UPA/TPA**2 

C DELTA(U) 
C B 

A(I,2,NXM,1)=xyb*.5*PPB/TPB*(2.*UPB*DYAB-VPB*DXAB) 

C DELTA(V) 
C B 

A(I,2,NXM,2)=-xyb*.5*PPB*UPB/TPB*DXAB 

C DELTA(P) 
C B 

A(I,2,NXM,3)=xyb*.5*(UPB/TPB*(UPB*DYAB-VPB*DXAB)+R*DYAB) 

C DELTA(T) 
C B 

A(I,2,NXM,4)=-xyb*.5*PPB*UPB/TPB**2*(UPB*DYAB-VPB*DXAB) 

C DELTA(U) 
C C 

A(I,3,NXM,1)=.5*PPC/TPC*(2.*UPC*DYBC-VPC*DXBC) 

C DELTA(V) 
C C 

A(I,3,NXM,2)=-.5*PPC*UPC/TPC*DXBC 

C DELTA(P) 
C C 

A(I,3,NXM,3)=.5*(UPC/TPC*(UPC*DYBC-VPC*DXBC)+R*DYBC) 

C DELTA(T) 
C C 

A(I,3,NXM,4)=-.5*PPC*UPC/TPC**2*(UPC*DYBC-VPC*DXBC) 

C DELTA(U) 
C D 



www.manaraa.com

169 

A(I,4,NXM,1)=.5*PPD/TPD*(2.*UPD*DYCA-VPD*DXCA) 

C DELTA(V) 
C D 

A(I,4,NXM,2)=-.5*PPD*UPD/TPD*DXCA 

C DELTA(P) 
C D 

A(I,4,NXM,3)=.5*(UPD/TPD*(UPD*DYCA-VPD*DXCA)+R*DYCA) 

C DELTA(T) 
C D 

A(I,4,NXM,4)=-.5*PPD*UPD/TPD**2*(UPD*DYCA-VPD*DXCA) 

C RHS 
C 

B(I,NXM)=-(S*(PPA*UPA/TPA-PA*UA/TA)/DELT 
. +.5*(PPB*UPB**2/TPB*DYAB 

+PPC*UPC**2/TPC*DYBC 
+PPD*UPD**2/TPD*DYCA 
+R*(PPB*DYAB+PPC*DYBC+PPD*DYCA) 
-PPB*UPB*VPB/TPB*DXAB 
-PPC*UPC*VPC/TPC*DXBC 
-PPD*UPD*VPD/TPD*DXCA)) 

C--Y MOMENTUM EQUATION 
C 

C DELTA(U) 
C A 

A(I.1,NYM,1)=0.0 
. -xywa*.5*PPB*VPB/TPB*DYAB 
. -xyia*.5*PPB*VPB/TPB*DYAB 
. +xyea*.5*PPB*VPB/TPB*DYAB 

C DELTA(V) 
C A 

A(I,1,NYM,2)=S*PPA/TPA/DELT 
. -xywa*.5*PPB/TPB*(UPB*DYAB-2.*VPB*DXAB) 
. -xyia*.5*PPB/TPB*(UPB*DYAB-2.*VPB*DXAB) 
. +xyea*.5*PPB/TPB*(UPB*DYAB-2.*VPB*DXAB) 

C Pseudo time term 

A(I,1,NYM,2)=A(I,1,NYM,2) 
+PSEUDO/DTAU*S*PPA/TPA 

C DELTA(P) 
C A 

A(I,1,NYM,3)=S*VPA/TPA/DELT 
. +xywa*.5* (VPB/TPB*(UPB*DYAB-VPB*DXAB)-R*DXAB) 



www.manaraa.com

170 

. +xyia*.5*DPC*(VPB/TPB*(UPB*DYAB-VPB*DXAB)-R*DXAB) 

. -xyea*.5*DPC*(VPB/TPB*(UPB*DYAB-VPB*DXAB)-R*DXAB) 

C Pseudo time term 

A(I,1,NYM,3)=A(I,1,NYM,3) 
+PSEUDO/DTAU*R*S*VPA/TPA 

C DELTA(T) 
C A 

A(I,1,NYM,4)=-S*PPA*VPA/TPA**2/DELT 
. -xywa*.5*PPB*VPB/TPB**2*(UPB*DYAB-VPB*DXAB) 
. +xyia*.5*PPB*VPB/TPB**2*(UPB*DYAB-VPB*DXAB) 
. -xyea*.5*PPB*VPB/TPB**2*(UPB*DYAB-VPB*DXAB) 

C Pseudo time term 

A(I,1,NYM,4)=A(I,1,NYM,4) 
-PSEUD0/DTAU*S*PPA*VPA/TPA**2 

C DELTA(U) 
C B 

A(I,2,NYM,1)=xyb*.5*PPB*VPB/TPB*DYAB 

C DELTA(V) 
C B 

A(I,2,NYM,2)=xyb*.5*PPB/TPB*(UPB*DYAB-2.*VPB*DXAB) 

C DELTA(P) 
C B 

A(I,2,NYM,3)=xyb*.5*(VPB/TPB*(UPB*DYAB-VPB*DXAB)-R*DXAB) 

C DELTA(T) 
C B 

A(I,2,NYM,4)=-xyb*.5*PPB*VPB/TPB**2*(UPB*DYAB-VPB*DXAB) 

C DELTA(U) 
C C 

A(I,3,NYM,1)=.5*PPC*VPC/TPC*DYBC 

C DELTA(V) 
C C 

A(I,3,NYM,2)=.5*PPC/TPC*(UPC*DYBC-2.*VPC*DXBC) 

C DELTA(P) 
C C 

A(I,3,NYM,3)=.5*(VPC/TPC*(UPC*DYBC-VPC*DXBC)-R*DXBC) 

C DELTA(T) 
C C 

A(I,3,NYM,4)=-.5*PPC*VPC/TPC**2*(UPC*DYBC-VPC*DXBC) 



www.manaraa.com

171 

C DELTA(U) 
C D 

A(I,4,NYM,1)=.5*PPD*VPD/TPD*DYCA 

C DELTA(V) 
C D 

A(I,4,NYM,2)=.5*PPD/TPD*(UPD*DYCA-2.*VPD*DXCA) 

C DELTA(P) 
C D 

A(I,4,NYM,3)=.5*(VPD/TPD*(UPD*DYCA-VPD*DXCA)-R*DXCA) 

C DELTA(T) 
C D 

A(I,4.NYM,4)=-.5*PPD*VPD/TPD**2*(UPD*DYCA-VPD*DXCA) 

C RHS 
C 

B(I,NYM)=-(S*(PPA*VPA/TPA-PA*VA/TA)/DELT 
. +.5*(PPB*UPB*VPB/TPB*DYAB 

+PPC*UPC*VPC/TPC*DYBC 
+PPD*UPD*VPD/TPD*DYCA 
-PPB*VPB**2/TPB*DXAB 
-PPC*VPC**2/TPC*DXBC 
-PPD*VPD**2/TPD*DXCA 
-R*(PPB*DXAB+PPC*DXBC+PPD*DXCA))) 

C—ENERGY EQUATION 
C 

C DELTA(U) 
C A 

A(I,1,NEN,1)=S*PPA*UPA/TPA/DELT 
. -xywa*.5* 
. PPB*((CP+.5/TPB*(3.*UPB**2+VPB**2))*DYAB 
. -UPB*VPB/TPB*DXAB) 
. -xyia*.5* 
. PPB*((CP+.5/TPB*(VPB**2+3.*UPB**2))*DYAB 
. -UPB*VPB/TPB*DXAB) 
. +xyea*.5* 
. PPB*((CP+.5/TPB*(VPB**2+3.*UPB**2))*DYAB 
. -UPB*VPB/TPB*DXAB) 

C Pseudo time term 

A(I,1,NEN,1)=A(I,1,NEN,1) 
+PSEUDO/DTAU*S*PPA*UPA/TPA 

C DELTA(V) 
C A 

A(I,1,NEN,2)=S*PPA*VPA/TPA/DELT 
. -xywa*.5* 



www.manaraa.com

172 

. PPB*(UPB*VPB/TPB*DYAB 

. -(CP+.5/TPB*(UPB**2+3.*VPB**2))*DXAB) 

. -xyia*.5* 

. PPB*(UPB*VPB/TPB*DYAB 

. -(CP+.5/TPB*(UPB**2+3.*VPB**2))*DXAB) 

. +xyea*.5* 

. PPB*(UPB*VPB/TPB*DYAB 

. -(GP+.5/TPB*(UPB**2+3.*VPB**2))*DXAB) 

C Pseudo time term 

A(I,1,NEN,2)=A(I,1,NEN,2) 
+PSEUDO/DTAU*S*PPA*VPA/TPA 

C DELTA(P) 
C A 

A(I,1,NEN,3)=S*(CP-R+.5/TPA*(UPA**2+VPA**2))/DELT 
. +xywa*.5* 

(CP+.5/TPB*(UPB**2+VPB**2))*(UPB*DYAB-VPB*DXAB) 
. +xyia*.5* 
. DPC*(CP+.5/TPB*(UPB**2+VPB**2))*(UPB*DYAB-VPB*DXAB) 
. -xyea*.5* 
. DPC*(CP+.5/TPB*(UPB**2+VPB**2))*(UPB*DYAB-VPB*DXAB) 

C Pseudo time term 

A(I,1,NEN,3)=A(I,1,NEN,3) 
+PSEUDO/DTAU*R*S*(CP-R+.5/TPA*(UPA**2+VPA**2)) 

C DELTA(T) 
C A 

A(I,1,NEN,4)=-.5*S*PPA/TPA**2*(UPA**2+VPA**2)/DELT 
. -xywa*.25*PPB/TPB**2*(UPB**2+VPB**2)*(UPB*DYAB-VPB*DXAB) 
. +xyia*.25*PPB/TPB**2*(UPB**2+VPB**2)*(UPB*DYAB-VPB*DXAB) 
. -xyea*.25*PPB/TPB**2*(UPB**2+VPB**2)*(UPB*DYAB-VPB*DXAB) 

C Pseudo time term 

A(I,1,NEN.4)=A(I,1.NEN,4) 
-PSEUDO/DTAU*.5*S*PPA/TPA**2*(UPA**2+VPA**2) 

C DELTA(U) 
C B 

A(I,2,NEN,1)=xyb*.5*PPB* 
. ((CP+.5/TPB*(3.*UPB**2+VPB**2))*DYAB-UPB*VPB/TPB*DXAB) 

C DELTA(V) 
C B 

A(I,2,NEN,2)=xyb*.5*PPB* 
. (UPB*VPB/TPB*DYAB-(CP+.5/TPB*(UPB**2+3.*VPB**2))*DXAB) 

C DELTA(P) 
C B 

A(I,2,NEN,3)=xyb*.5* 
. (CP+.5/TPB*(UPB**2+VPB**2))*(UPB*DYAB-VPB*DXAB) 



www.manaraa.com

173 

C DELTA(T) 
C B 

A(I,2,NEN,4)=-xyb*.25*PPB/TPB**2* 
. (UPB**2+VPB**2)*(UPB*DYAB-VPB*DXAB) 

C DELTA(U) 
C C 

A(I,3,NEN,1)=.5*PPC* 
. ((CP+.5/TPC*(3.*UPC**2+VPC**2))*DYBC-UPC*VPC/TPC*DXBC) 

C DELTA(V) 
C C 

A(I,3,NEN,2)=.5*PPC* 
. (UPC*VPC/TPC*DYBC-(CP+.5/TPC*(UPC**2+3.*VPC**2))*DXBC) 

C DELTA(P) 
C C 

A(I,3,NEN,3)=.5* 
. (CP+.5/TPC*(UPC**2+VPC**2))*(UPC*DYBC-VPC*DXBC) 

C DELTA(T) 
C C 

A(I,3,NEN,4)=-.25*PPC/TPC**2* 
. (UPC**2+VPC**2)*(UPC*DYBC-VPC*DXBC) 

C DELTA(U) 
C D 

A(I,4,NEN,1)=.5*PPD* 
. ((CP+.5/TPD*(3.*UPD**2+VPD**2))*DYCA-UPD*VPD/TPD*DXCA) 

C DELTA(V) 
C D 

A(I,4,NEN,2)=.5*PPD* 
. (UPD*VPD/TPD*DYCA-(CP+.5/TPD*(UPD**2+3.*VPD**2))*DXCA) 

C DELTA(P) 
C D 

A(I,4,NEN,3)=.5* 
. (CP+.5/TPD*(UPD**2+VPD**2))*(UPD*DYCA-VPD*DXCA) 

C DELTA(T) 
C D 

A(I,4,NEN,4)=-.25*PPD/TPD**2* 
. (UPD**2+VPD**2)*(UPD*DYCA-VPD*DXCA) 

C RHS 
C 

B(I,NEN)=-(S*(((CP-R)*PPA+,5*PPA/TPA*(UPA**2+VPA**2)) 
. -((CP-R)*PA+.5*PA/TA*(UA**2+VA**2)))/DELT 
. +.5*(PPB*(CP+.5/TPB*(UPB**2+VPB**2))*UPB*DYAB 

+PPC*(CP+.5/TPC*(UPC**2+VPC**2))*UPC*DYBC 



www.manaraa.com

174 

+PPD*(CP+.5/TPD*(UPD**2+VPD**2))*UPD*DYCA 
-PPB*(CP+.5/TPB*(UPB**2+VPB**2))*VPB*DXAB 
-PPC*(CP+.5/TPC*(UPC**2+VPC**2))*VPC*DXBC 
-PPD*(CP+.5/TPD*(UPD**2+VPD**2))*VPD*DXCA)) 

1 CONTINUE 

•DECK Vise 
SUBROUTINE VISC 

*CALL COMMZ 

DO 1 1=1,NCT 

ICA=I 
ICB=NUMEL(I,2) 
ICC=NUMEL(I,3) 
ICD=NUMEL(I,4) 
ICE=NUMEL(I,5) 
ICF=NUMEL(I,6) 
ICG=NUMEL(I,7) 
ICH=NUMEL(I,8) 
ICI=NUMEL(I,9) 
ICJ=NUMEL(I,10) 

C—NODES OF CELL I 
N1=NCELL(4,ICA) 
N2=NCELL(5,ICA) 
N3=NCELL(6,ICA) 

C Find Nodes D, E, F 
N4=NCELL(4,ICB)+NCELL(5,ICB)+NCELL(6,ICE)-N1-N2 
N5=NCELL(4,ICC)+NCELL(5,ICC)+NCELL(6,ICC)-N2-N3 
N6=NCELL(4,ICD)+NCELL(5,ICD)+NCELL(6,ICD)-M3-N1 

—Compute metrics on edges 
if(icb.gt.O)then 
X4=X(n4) 
Y4=Y(n4) 
else 

Symmetry of cell B and A gives node d 
al=x(nl) 
a2=y(nl) 
bl=x(n2) 
b2=y(n2) 
cl=x(n3) 
c2=y(n3) 
t4=((al-bl)*(al-cl)+(a2-b2)*(a2-c2))/ 
. ((bl-al)**2+(b2-a2)**2) 
X4=cl+2.*(al-cl+t4*(bl-al)) 
Y4=c2+2.*(a2-c2+t4*(b2-a2)) 



www.manaraa.com

175 

endif 
temporary fix for periodic boundary with pitch of 3.0 

pitch=3.0 
npf=3971 
nln21=201 
nln2u=253 
if(ncell(1,ica).ge.npf)then 
n4=ncell(6,icb) 
X4=X(n4) 
if(nl+n2.Ie.nln21)y4=y(n4)-pitch 
if(nl+n2.ge.nln2u)y4=y(n4)+pitch 

endif 

DXAB=X(N2)-X(N1) 
DYAB=Y(N2)-Y(N1) 
DXBC=XCN3)-X(N2) 
DYBC=Y(N3)-Y(N2) 
DXCA=X(N1)-X(N3) 
DYCA=Y(N1)-Y(N3) 
DXAD=X4-X(N1) 
DYAD=Y4-Y(N1) 
DXDB=X(N2)-X4 
DYDB=Y(N2)-Y4 
DXBE=X(N5)-X(N2) 
DYBE=Y(N5)-Y(N2) 
DXEC=X(N3)-X(N5) 
DYEC=Y(N3)-Y(N5) 
DXCF=X(N6)-X(N3) 
DYCF=Y(N6)-Y(N3) 
DXFA=X(N1)-X(N6) 
DYFA=Y(N1)-Y(N6) 

AREA OF Quad. CELL I 
SA=VOL(ICA) 
if(icb.gt.O)then 
SB=VOL(ICB) 
else 
SB=VOL(ICA) 
endif 
SC=VOL(ICC) 
SD=VQL(ICD) 
SAB=SA+SB 
SAC=SA+SC 
SAD=SA+SD 

VARIABLES OF CELL A, B, C, D. E, F, G, H, I, AND 

CELL A 
UA=U(ICA) 
VA=V(ICA) 
TA=T(ICA) 
PROVISIONAL VALUES 
UPA=UP(ICA) 
VPA=VP(ICA) 
TPA=TP(ICA) 

xyb=l. 
xye=l. 
xyf=l. 



www.manaraa.com

xyg=i. 
xyh=l. 
xyi=l. 
xyj=l. 
xywab=0. 
xywad=0. 
xywdb=0. 
xywbe=0. 
xywec=0. 
xywcf=0. 
xywfa=0. 
xyiab=0. 
xyiad=0. 
xyidb=0. 
xyibe=0. 
xyiec=0. 
xyicf=0. 
xyifa=0. 
xyeab=0. 
xyead=0. 
xyedb=0. 
xyebe=0. 
xyeec=0. 
xyecf=0. 
xyefa=0. 

CELL B 
if(icb.gt.0)then 
UPB=UP(ICB) 
VPB=VP(ICB) 
TPB=TP(ICB) 
else 
if(icb.eq.O)then 
xyb=0.0 
xye=0.0 
xyf=0.0 
xywab=l. 

UPE=-UP(ICD) 
VPE=-VP(IGD) 
TPE=TP(ICD) 
UPF=-UP(ICC) 
VPF=-VP(ICC) 
TPF=TP(ICC) 
else 
if(icb.eq.-1)then 
xyb=0.0 
xye=0.0 
xyf=0.0 
xyiab=l. 
UPB=2.*UI(ICA)-UPA 
VPB=2.*VI(ICA)-VPA 



www.manaraa.com

177 

TPB=2.*TI(ICA)-TPA 
UPE=UPB 

UPF=UPB 

else 
if(icb.eq.-2)then 
xyb=0.0 
xye=0.0 
xyf=0.0 
xyeab=l. 
UPB=UPA 
VPB=VPA 
TPB=TPA 
UPE=UP(ICD) 
VPE=VP(ICD) 
TPE=TP(ICD) 
UPF=UP(ICC) 
VPF=VP(ICC) 
TPF=TP(ICC) 
endjf 

isâsî 
endif 

CELL C 
UPC=UP(ICC) 
VPC=VP(ICC) 
TPC=TP(ICC) 

CELL D 
UPD=UP(ICD) 
VPD=VP(ICD) 
TPD=TP(ICD) 

CELL E 
if(icb.gt.O)then 
if(ice.gt.0)then 
UPE=UP(ICE) 
VPE=VP(ICE) 
TPE=TP(ICE) 

else 
if(ice.eq.O)then 
xye=0.0 
xywad=l.0 
UPE=-UPB 
VPE=-VPB 
TPE=TPB 

else 
if(ice.eq.-l)then 
xye=0.0 
xyiad=l.0 

UPE=2.*UI(ICB)-UPB 
VPE=2.*VI(ICB)-VPB 
TPE=2.*TI(ICB)-TPB 

else 
if(ice.eq.-2)then 
xye=0.0 



www.manaraa.com

xyead=l.0 
UPE=UPB 

TP|=TPB 
endif 
endif 

endif 

CELL F 
if(icb.gt.O)then 
if(icf.gt.O)then 
UPF=UP(ICF) 
VPF=VP(ICF) 
TPF=TP(ICF) 

else 
if(icf.eq.O)then 
xyf=0.0 
xywdb=l.0 
UPF=-UPB 
VPF=-VPB 
TPF=TPB 

else 
if(icf.eq.-l)then 
xyf=0.0 
xyidb=l.0 
UPF=2.*UI(ICB)-UPB 
VPF=2.*VI(ICB)-VPB 
TPF=2.*TI(ICB)-TPB 

else 
if(icf.eq.-2)then 
xyf=0.0 
xyedb=l.0 

ifPSSlPi 
TPF=TPB 

ii 
endif 

endif 

CELL G 
if(icg.gt.O)then 
UPG=UP(ICG) 
VPG=VP(ICG) 
TPG=TP(ICG) 
else 
if(icg.eq.O)then 
xyg=0.0 
xywbe=l.0 
UPG=-UPC 
VPG=-VPC 
TPG=TPC 

else 
if(icg.eq.-l)then 
xyg=0.0 
xyibe=l.0 
UPG=2.*UI(ICC)-UPC 



www.manaraa.com

VPG=2.*VI(ICC)-VPC 
TPG=2.*TI(ICC)-TPC 
else 
if(icg.eq.-2)then 
xyg=0.0 
xyebe=l.0 
UPG=UPC 

TPQ=TPC 
endif 
endif 
endif 
endif 

CELL H 
if(ich.gt.O)then 
UPH=UP(ICH) 
VPH=VP(ICH) 
TPH=TP(ICH) 
else 
if(ich.eq.O)then 
xyh=0.0 
xywec=l.0 
UPH=-UPC 
VPH=-VPC 
TPH=TPC 
else 
if(ich.eq.-l)then 
xyh=0.0 
xyiec=l.0 

UPH=2.*UI(ICC)-UPC 
VPH=2.*VI(ICC)-VPC 
TPH=2.*TI(ICC)-TPC 
else 
if(ich.eq.-2)then 
xyh=0.0 
xyeec=l.0 

TPH=TPC 
endif 
endif 
endif 
endif 

CELL I 
if(ici.gt.O)then 
UPI=UP(ICI) 
VPI=VP(ICI) 
TPI=TP(ICI) 
else 
if(ici.eq.O)then 
xyi=0.0 
xywcf=l.0 
UPI=-UPD 
VPI=-VPD 
TPI=TPD 

else 
if(ici.eq.-l)then 
xyi=0.0 



www.manaraa.com

180 

xyicf=1.0 
UPI=2.*UI(ICD)-UPD 
VPI=2.*VI(ICD)-VPD 
TPI=2.*TI(ICD)-TPD 
else 
if(ici.eq.-2)then 
xyi=0.0 
xyecf=l.0 

m 

m 
endif 

C CELL J 
if (icj .gt.O)theii 
UPJ=UP(ICJ) 
VPJ=VP(ICJ) 
TPJ=TP(ICJ) 
else 
if(icj.eq.O)then 
xyj=0.0 
xywfa=l.0 
UPJ=-UPD 
VPJ=-VPD 
TPJ=TPD 
else 
if(icj.eq.-l)then 
xyj=0.0 
xyifa=l.0 
UPJ=2.*UI(ICD)-UPD 
VPJ=2.*VI(ICD)-VPD 
TPJ=2.*TI(ICD)-TPD 
else 
if(icj.eq.-2)then 
xyj=0.0 
xyefa=l.0 
UPJ=UPD 
VPJ=VPD 
TPJ=TPD 
endif 
endq.f 
endif 
end if 

C Coefficients of equations 
C Use nondimensional Sutherland's Law to compute viscosity 

XMU=SC1*SQRT(TPA**3)/(TPA+SC2) 

CCOEF =.5*XMU*R/REN0 
CCOEFF=.5*XMU*R/REN0*CP/PR 

C--X MOMENTUM EQUATION 

C DELTA(U) 
C A 



www.manaraa.com

181 

A(ICA,1,NXM,1)=A(ICA,1,NXM,1)-CC0EF* 
(4./3.*(DYAB/SAB*(DYBC+DYCA) 

+DYBC/SAC*(DYAB+DYCA) 
+DYCA/SAD*(DYAB+DYBC)) 
+DXAB/SAB*(DXBC+DXCA) 
+DXBC/SAC*(DXAB+DXCA) 
+DXCA/SAD*(DXAB+DXBC)) 

+xywab*CCOEF* 
(4./3.*(DYAB/SAB*(DYAD+DYDB)+DYBC/SAC*DYAB+DYCA/SAD*DYAB) 

+DXAB/SAB*(DXAD+DXDB)+DXBC/SAC*DXAB+DXCA/SAD*DXAB) 
+xyiab*CCOEF* 
(4./3.*(DYAB/SAB*(DYAD+DYDB)+DYBC/SAG*DYAB+DYCA/SAD*DYAB) 

+DXAB/SAB*(DXAD+DXDB)+DXBC/SAC*DXAB+DXCA/SAD*DXAB 
+4./3.*DYAB/SAB*DYAD + DXAB/SAB*DXAD 
+4./3.*DYAB/SAB*DYDB + DXAB/SAB*DXDB) 

-xyeab*CCOEF* 
(4./3.*(DYAB/SAB*(DYAD+DYDB)+DYBC/SAC*DYAB+DYCA/SAD*DYAB) 

+DXAB/SAB*(DXAD+DXDB)+DXBC/SAC*DXAB+DXCA/SAD*DXAB) 

DELTA(V) 

-xywab*CCOEF* 
(-2./3.*(DYAB/SAB*(DXAD+DXDB)+DYBC/SAC*DXAB+DYCA/SAD*DXAB) 

+DXAB/SAB*(DYAD+DYDB)+DXBC/SAC*DYAB+DXCA/SAD*DYAB) 
-xyiab*CCOEF* 
(-2./3.*(DYAB/SAB*(DXAD+DXDB)+DYBC/SAC*DXAB+DYCA/SAD*DXAB) 

+DXAB/SAB*(DYAD+DYDB)+DXBC/SAC*DYAB+DXCA/SAD*DYAB 
-2./3.*DYAB/SAB*DXAD + DXAB/SAB*DYAD 
-2./3.*DYAB/SAB*DXDB + DXAB/SAB*DYDB) 

+xyeab*CCOEF* 
(-2./3.*(DYAB/SAB*(DXAD+DXDB)+DYBC/SAC*DXAB+DYCA/SAD*DXAB) 

+DXAB/SAB*(DYAD+DYDB)+DXBC/SAC*DYAB+DXCA/SAD*DYAB) 

DELTA(U) 

A(ICA,2,NXM,1)=A(ICA,2,NXM,1)-xyb*CCOEF* 
. (4./3.*(DYAB/SAB*(DYAD+DYDB)+DYBC/SAC*DYAB+DYCA/SAD*DYAB) 

+DXAB/SAB*(DXAD+DXDB)+DXBC/SAC*DXAB+DXCA/SAD*DXAB) 
. +xywad*CC0EF*(4./3.*DYAB/SAB*DYAD + DXAB/SAB*DXAD) 
. +xywdb*CC0EF*(4./3.*DYAB/SAB*DYDB + DXAB/SAB*DXDB) 
. +xyiad*CC0EF*(4./3.*DYAB/SAB*DYAD + DXAB/SAB*DXAD) 
. +xyidb*CC0EF*(4./3.*DYAB/SAB*DYDB + DXAB/SAB*DXDB) 
. -xyead*CC0EF*(4./3.*DYAB/SAB*DYAD + DXAB/SAB*DXAD) 
. -xyedb*CC0EF*(4./3.*DYAB/SAB*DYDB + DXAB/SAB*DXDB) 

DELTA(V) 

A 

A(ICA,1,NXM,2)=A(ICA,1,NXM,2)+CC0EF* 
(-2./3.*(DYAB/SAB*(DXBC+DXCA) 

+DYBC/SAC*(DXAB+DXCA) 
+DYCA/SAD*(DXAB+DXBC)) 
+DXAB/SAB*(DYBC+DYCA) 
+DXBC/SAC*(DYAB+DYCA) 
+DXCA/SAD*(DYAB+DYBC)) 

B 

B 



www.manaraa.com

182 

A(ICA,2,NXM.2)=A(ICA,2,NXM,2)+xyb*CCOEF* 
. (-2./3.*(DYAB/SAB*(DXAD+DXDB)+DYBC/SAC*DXAB+DYCA/SAD*DXAB) 

+DXAB/SAB*(DYAD+DYDB)+DXBC/SAC*DYAB+DXCA/SAD*DYAB) 
. -xywad*CC0EF*(-2./3.*DYAB/SAB*DXAD + DXAB/SAB+DYAD) 
. -xywdb*CC0EF*(-2./3.*DYAB/SAB*DXDB + DXAB/SAB*DYDB) 
. -xyiad*CCDEF*(-2./3.*DYAB/SAB*DXAD + DXAB/SAB*DYAD) 
. -xyidb*CC0EF*(-2./3.*DYAB/SAB*DXDB + DXAB/SAB*DYDB) 
. +xyead*CC0EF*(-2./3.*DYAB/SAB*DXAD + DXAB/SAB*DYAD) 
. +xyedb*CC0EF*(-2./3.*DYAB/SAB*DXDB + DXAB/SAB*DYDB) 

C DELTA(U) 
C C 

A(ICA,3,NXM,1)=A(ICA,3,NXM,1)-CC0EF* 
. (4./3.*(DYAB/SAB*DYBC+DYBC/SAC*(DYBE+DYEC)+DYCA/SAD*DYBC) 

+DXAB/SAB*DXBC+DXBC/SAC*(DXBE+DXEC)+DXCA/SAD*DXBC) 
. +xywab*CC0EF*(4./3.*DYAB/SAB*DYDB + DXAB/SAB*DXDB) 
. +xywbe*CC0EF*(4./3.*DYBC/SAC*DYBE + DXBC/SAC*DXBE) 
. +xywec*CC0EF*(4./3.*DYBC/SAC*DYEC + DXBG/SAC*DXEC) 
. +xyibe*CC0EF*(4./3.*DYBC/SAC*DYBE + DXBC/SAC*DXBE) 
. +xyiec*CC0EF*(4./3.*DYBC/SAC*DYEC + DXBC/SAC*DXEC) 
. -xyeab*CC0EF*(4./3.*DYAB/SAB*DYDB + DXAB/SAB*DXDB) 
. -xyebe*CC0EF*(4./3.*DYBC/SAC*DYBE + DXBC/SAC*DXBE) 
. -xyeec*CC0EF*(4./3.*DYBC/SAC*DYEC + DXBC/SAC*DXEC) 

C DELTA(V) 
C C 

A(ICA,3,NXM,2)=A(ICA,3,NXM,2)+CC0EF* 
. (-2./3.*(DYAB/SAB*DXBC+DYBC/SAC*(DXBE+DXEC)+DYCA/SAD*DXBC) 

+DXAB/SAB*DYBC+DXBC/SAC*(DYBE+DYEC)+DXCA/SAD*DYBC) 
. -xywab*CCDEF*(-2./3.*DYAB/SAB*DXDB + DXAB/SAB*DYDB) 
. -xywbe*CC0EF*(-2./3.*DYBC/SAC*DXBE + DXBC/SAC*DYBE) 
. -xywec*CC0EF*(-2./3.*DYBC/SAC*DXEC + DXBC/SAC*DYEC) 
. -xyibe*CC0EF*(-2./3.*DYBC/SAC*DXBE + DXBC/SAC*DYBE) 
. -xyiec*CC0EF*(-2./3.*DYBC/SAC*DXEC + DXBC/SAC*DYEC) 
. +xyeab*CC0EF*(-2./3.*DYAB/SAB*DXDB + DXAB/SAB*DYDB) 
. +xyebe*CC0EF*(-2./3.*DYBC/SAC*DXBE + DXBC/SAC*DYBE) 
. +xyeec*CC0EF*(-2./3.*DYBC/SAC*DXEC + DXBC/SAC*DYEC) 

C DELTA(U) 
C D 

A(ICA,4,NXM,1)=A(ICA,4,NXM,1)-CC0EF* 
. (4./3.*(DYAB/SAB*DYCA+DYBC/SAC*DYCA+DYCA/SAD*(DYCF+DYFA)) 

+DXAB/SAB*DXCA+DXBC/SAC*DXCA+DXCA/SAD*(DXCF+DXFA)) 
. +xywab*CC0EF*(4./3.*DYAB/SAB*DYAD + DXAB/SAB*DXAD) 
. +xywcf*CC0EF*(4./3.*DYCA/SAD*DYCF + DXCA/SAD*DXCF) 
. +xywfa*CC0EF*(4./3.*DYCA/SAD*DYFA + DXCA/SAD*DXFA) 
. +xyicf*CC0EF*(4./3.*DYCA/SAD*DYCF + DXCA/SAD*DXCF) 
. +xyifa*GG0EF*(4./3.*DYCA/SAD*DYFA + DXCA/SAD*DXFA) 
. -xyeab*CC0EF*(4./3.*DYAB/SAB*DYAD + DXAB/SAB*DXAD) 



www.manaraa.com

183 

. -xyecf*CC0EF*(4./3.*DYCA/SAD*DYCF + DXCA/SAD*DXCF) 

. -xyefa*CC0EF*(4./3.*DYCA/SAD*DYFA + DXCA/SAD*DXFA) 

C DELTA(V) 
C D 

A(ICA,4,NXM,2)=A(ICA,4,NXM,2)+CC0EF* 
. (-2./3.*(DYAB/SAB*DXCA+DYBC/SAC*DXCA+DYCA/SAD*(DXCF+DXFA)) 

+DXAB/SAB*DYCA+DXBC/SAC*DYCA+DXCA/SAD*(DYCF+DYFA)) 
. -xywab*CC0EF*(-2./3.*DYAB/SAB*DXAD + DXAB/SAB*DYAD) 
. -xywcf*CC0EF*(-2./3.*DYCA/SAD*DXCF + DXCA/SAD*DYCF) 
. -xywfa*CC0EF*(-2./3.*DYCA/SAD*DXFA + DXCA/SAD*DYFA) 
. -xyicf*CC0EF*(-2./3.*DYCA/SAD*DXCF + DXCA/SAD*DYCF) 
. -xyifa*CC0EF*(-2./3.*DYCA/SAD*DXFA + DXCA/SAD*DYFA) 
. +xyeab*CCQEF*(-2./3.*DYAB/SAB*DXAD + DXAB/SAB»DYAD) 
. +xyecf*CC0EF*(-2./3.*DYCA/SAD*DXCF + DXCA/SAD*DYCF) 
. +xyefa*CC0EF*(-2./3.*DYCA/SAD*DXFA + DXCA/SAD*DYFA) 

C DELTA(U) 
G E 

A(ICA,5,NXM,1)=-xye*CCOEF* 
. (4./3.*DYAB/SAB*DYAD + DXAB/SAB*DXAD) 

C DELTA(V) 
C E 

A(ICA,5,NXM,2)=xye*CCOEF* 
.(-2./3.*DYAB/SAB*DXAD + DXAB/SAB*DYAD) 

C DELTA(U) 
C F 

A(ICA,6,NXM,1)=-xyf*CCOEF* 
. (4./3.*DYAB/SAB*DYDB + DXAB/SAB*DXDB) 

C DELTA(V) 
C F 

A(ICA,6,NXM,2)=xyf+CCOEF* 
.(-2./3.*DYAB/SAB*DXDB + DXAB/SAB*DYDB) 

C DELTA(U) 
C G 

A(ICA,7,NXM,1)=-xyg*CCOEF* 
. (4./3.*DYBC/SAC*DYBE + DXBC/SAC*DXBE) 

C DELTA(V) 
C G 

A(ICA,7,NXM,2)=xyg*CCOEF* 
.(-2./3.*DYBC/SAC*DXBE + DXBC/SAC*DYBE) 

C DELTA(U) 
C H 

A(ICA,8,NXM,1)=-xyh*CCOEF* 
. (4./3.*DYBC/SAC*DYEC + DXBC/SAC*DXEC) 



www.manaraa.com

184 

DELTA(V) 
H 

A(ICA,8,NXM,2)=xyh*CCOEF* 
.(-2./3.*DYBC/SAC*DXEC + DXBC/SAC*DYEC) 

DELTA(U)^ 

A(ICA,9,NXM,1)=-xyi *CCOEF* 
. (4./3.*DYCA/SAD*DYCF + DXCA/SAD*DXCF) 

DELTA(V)^ 

A(ICA,9,NXM,2)=xyi*CC0EF* 
.(-2./3.*DYCA/SAD*DXCF + DXCA/SAD*DYCF) 

DELTA(U)^ 

A(ICA,10,NXM,1)=-xyj *CCOEF* 
. (4./3.*DYCA/SAD*DYFA + DXCA/SAD*DXFA) 

DELTA(V)^ 

A(ICA,10,NXM,2)=xyj*CC0EF* 
.(-2./3.*DYCA/SAD*DXFA + DXCA/SAD*DYFA) 

RHS(split into 2 parts) 

B(ICA,NXM)=B(ICA,NXM) - CCOEF* 
(-4./3.*(DYAB/SAB*((UPB+UPE)*DYAD+(UPB+UPF)*DYDB 

+(UPA+UPC)*DYBC+(UPA+UPD)*DYCA) 
+DYBC/SAC*((UPA+UPB)*DYAB+(UPC+UPG)*DYBE 

+(UPC+UPH)*DYEC+(UPA+UPD)*DYCA) 
+DYCA/SAD*((UPA+UPB)*DYAB+(UPA+UPC)*DYBC 

+(UPD+UPI)*DYCF+(UPD+UPJ)*DYFA)) 
-2./3.*(DYAB/SAB*((VPB+VPE)*DXAD+(VPB+VPF)*DXDB 

+(VPA+VPC)*DXBC+(VPA+VPD)*DXCA) 
+DYBC/SAC*((VPA+VPB)*DXAB+(VPC+VPG)*DXBE 

+(VPC+VPH)*DXEC+(VPA+VPD)*DXCA) 
+DYCA/SAD*((VPA+VPB)*DXAB+(VPA+VPC)*DXBC 

+(VPD+VPI)*DXCF+(VPD+VPJ)*DXFA))) 

B(ICA,NXM)=B(ICA,NXM) - CCOEF* 
(-DXAB/SAB*((UPB+UPE)*DXAD+(UPB+UPF)*DXDB 

+(UPA+UPC)*DXBC+(UPA+UPD)*DXCA) 
-DXBC/SAC*((UPA+UPB)*DXAB+(UPC+UPG)*DXBE 

+(UPC+UPH)*DXEC+(UPA+UPD)*DXCA) 
-DXCA/SAD*((UPA+UPB)*DXAB+(UPA+UPC)*DXBC 

+(UPD+UPI)*DXCF+(UPD+UPJ)*DXFA) 
+DXAB/SAB*((VPB+VPE)*DYAD+(VPB+VPF)*DYDB 

+(VPA+VPC)*DYBC+(VPA+VPD)*DYCA) 
+DXBC/SAC*((VPA+VPB)*DYAB+(VPC+VPG)*DYBE 



www.manaraa.com

185 

+(VPC+VPH)*DYEC+(VPA+VPD)*DYCA) 
+DXCA/SAD*((VPA+VPB)*DYAB+(VPA+VPC)*DYBC 

+(VPD+VPI)*DYCF+(VPD+VPJ)*DYFA)) 

C—Y MOMENTUM EQUATION 
C 

C DELTA(U) 
C A 

A(ICA,1,NYM,1)=A(ICA,1,NYM,1)+CC0EF* 
(DYAB/SAB*(DXBC+DXCA) 
+DYBC/SAC*(DXAB+DXCA) 
+DYCA/SAD*(DXAB+DXBC) 

-2./3.*(DXAB/SAB*(DYBC+DYCA) 
+DXBC/SAC*(DYAB+DYCA) 
+DXCA/SAD*(DYAB+DYBC))) 

. -xywab*CCOEF* 
(DYAB/SAB*(DXAD+DXDB)+DYBC/SAC*DXAB+DYCA/SAD*DXAB 

. -2./3.*(DXAB/SAB*(DYAD+DYDB)+DXBC/SAC*DYAB+DXCA/SAD*DYAB)) 

. -xyiab*CCOEF* 
(DYAB/SAB*(DXAD+DXDB)+DYBC/SAC*DXAB+DYCA/SAD*DXAB 

. -2./3.*(DXAB/SAB*(DYAD+DYDB)+DXBC/SAC*DYAB+DXCA/SAD*DYAB) 
+DYAB/SAB*DXAD - 2./3.*DXAB/SAB*DYAD 
+DYAB/SAB*DXDB - 2./3.*DXAB/SAB*DYDB) 

. +xyeab*CCOEF* 
(DYAB/SAB*(DXAD+DXDB)+DYBC/SAC*DXAB+DYCA/SAD*DXAB 

. -2./3.*(DXAB/SAB*(DYAD+DYDB)+DXBC/SAC*DYAB+DXCA/SAD*DYAB)) 

C DELTA(V) 
C A 

A(ICA,1,NYM,2)=A(ICA,1,NYM,2)-CC0EF* 
(DYAB/SAB*(DYBC+DYCA) 
+DYBC/SAC*(DYAB+DYCA) 
+DYCA/SAD*(DYAB+DYBC) 

+4./3.*(DXAB/SAB*(DXBC+DXCA) 
+DXBC/SAC*(DXAB+DXCA) 
+DXCA/SAD*(DXAB+DXBC))) 

. +xywab*CCOEF* 
(DYAB/SAB*(DYAD+DYDB)+DYBC/SAC*DYAB+DYCA/SAD*DYAB 

. +4./3.*(DXAB/SAB*(DXAD+DXDB)+DXBC/SAC*DXAB+DXCA/SAD*DXAB)) 

. +xyiab*CCOEF* 
(DYAB/SAB*(DYAD+DYDB)+DYBC/SAC*DYAB+DYCA/SAD*DYAB 

. +4./3.*(DXAB/SAB*(DXAD+DXDB)+DXBC/SAC*DXAB+DXCA/SAD*DXAB) 
+DYAB/SAB*DYAD + 4./3.*DXAB/SAB*DXAD 
+DYAB/SAB*DYDB + 4./3.*DXAB/SAB*DXDB) 

. -xyeab*CCOEF* 
(DYAB/SAB*(DYAD+DYDB)+DYBC/SAC*DYAB+DYCA/SAD*DYAB 

. +4./3.*(DXAB/SAB*(DXAD+DXDB)+DXBC/SAC*DXAB+DXCA/SAD*DXAB)) 

C DELTA(U) 
C B 

A(ICA,2,NYM,1)=A(ICA,2,NYM,1)+xyb*CCOEF* 
(DYAB/SAB*(DXAD+DXDB)+DYBC/SAC*DXAB+DYCA/SAD*DXAB 



www.manaraa.com

186 

. -2./3.*(DXAB/SAB*(DYAD+DYDB)+DXBC/SAC*DYAB+DXCA/SAD*DYAB)) 

. -xywad*CCOEF*(DYAB/SAB*DXAD - 2./3.*DXAB/SAB*DYAD) 

. -xywdb*CCOEF*(DYAB/SAB*DXDB - 2./3.*DXAB/SAB*DYDB) 

. -xyiad*CCOEF*(DYAB/SAB*DXAD - 2./3.*DXAB/SAB*DYAD) 

. -xyidb*CCOEF*(DYAB/SAB*DXDB - 2./3.*DXAB/SAB*DYDB) 

. +xyead*CCOEF*(DYAB/SAB*DXAD - 2./3.*DXAB/SAB*DYAD) 

. +xyedb*CCOEF*(DYAB/SAB*DXDB - 2./3.*DXAB/SAB*DYDB) 

DELTA(V) 
B 

A(ICA,2,NYM,2)=A(ICA,2,NYM,2)-xyb*CC0EF* 
(DYAB/SAB* CDYAD+DYDB)+DYBC/SAC*DYAB+DYCA/SAD*DYAB 

. +4./3.*(DXAB/SAB*(DXAD+DXDB)+DXBC/SAC*DXAB+DXCA/SAD*DXAB)) 

. +xywad*CCOEF*(DYAB/SAB*DYAD + 4./3.*DXAB/SAB*DXAD) 

. +xywdb*CCOEF*(DYAB/SAB*DYDB + 4./3.*DXAB/SAB*DXDB) 

. +xyiad*CCOEF*(DYAB/SAB*DYAD + 4./3.*DXAB/SAB*DXAD) 

. +xyidb*CCDEF*(DYAB/SAB*DYDB + 4./3.*DXAB/SAB*DXDB) 

. -xyead*CCOEF*(DYAB/SAB*DYAD + 4./3.*DXAB/SAB*DXAD) 

. -xyedb*CCOEF*(DYAB/SAB*DYDB + 4./3.*DXAB/SAB*DXDB) 

DELTA(U) 
C 

A(ICA,3,NYM,1)=A(ICA,3,NYM,1)+CC0EF* 
(DYAB/SAB*DXBC+DYBC/SAC*(DXBE+DXEC)+DYCA/SAD*DXBC 

. -2./3.*(DXAB/SAB*DYBC+DXBC/SAC*(DYBE+DYEC)+DXCA/SAD*DYBC)) 

. -xywab*CCOEF*(DYAB/SAB*DXDB - 2./3.*DXAB/SAB*DYDB) 

. -xywbe*CCOEF*(DYBC/SAC*DXBE - 2./3.*DXBC/SAC*DYBE) 

. -xywec*CCOEF*(DYBC/SAC*DXEC - 2./3.*DXBC/SAC*DYEC) 

. -xyibe*CCOEF*(DYBC/SAC*DXBE - 2./3.*DXBC/SAC*DYBE) 

. -xyiec*CCOEF*(DYBC/SAC*DXEC - 2./3.*DXBC/SAC*DYEC) 

. +xyeab*CCOEF*(DYAB/SAB*DXDB - 2./3.*DXAB/SAB*DYDB) 

. +xyebe*CCOEF*(DYBC/SAC*DXBE - 2./3.*DXBC/SAC*DYBE) 

. +xyeec*CCOEF*(DYBC/SAC»DXEC - 2./3.*DXBC/SAC*DYEC) 

DELTA(V) 
C 

A(ICA,3,NYM,2)=A(ICA,3,NYM,2)-CC0EF* 
(DYAB/SAB*DYBC+DYBC/SAC*(DYBE+DYEC)+DYCA/SAD*DYBC 

. +4./3.*(DXAB/SAB*DXBC+DXBC/SAC*(DXBE+DXEC)+DXCA/SAD*DXBC)) 

. +xywab*CCOEF*(DYAB/SAB*DYDB + 4./3.*DXAB/SAB*DXDB) 

. +xywbe*CCOEF*(DYBC/SAC*DYBE + 4./3.*DXBC/SAC*DXBE) 

. +xywec*CCOEF*(DYBC/SAC*DYEC + 4./3.*DXBC/SAC*DXEC) 

. +xyibe*CCOEF*(DYBC/SAC*DYBE + 4./3.*DXBC/SAC*DXBE) 

. +xyiec*CCOEF*(DYBC/SAC*DYEC + 4./3.*DXBC/SAC*DXEC) 

. -xyeab*CCOEF*(DYAB/SAB*DYDB + 4./3.*DXAB/SAB*DXDB) 

. -xyebe*CCOEF*(DYBC/SAC*DYBE + 4./3.*DXBC/SAC*DXBE) 

. -xyeec*CCDEF*(DYBC/SAC*DYEC + 4./3.*DXBC/SAC*DXEC) 

DELTA(U) 
D 



www.manaraa.com

187 

A(ICA,4,NYM,1)=A(ICA,4,NYM,1)+CC0EF* 
(DYAB/SAB*DXCA+DYBC/SAC*DXCA+DYCA/SAD*(DXCF+DXFA) 

. -2./3.*(DXAB/SAB*DYCA+DXBC/SAC*DYCA+DXCA/SAD*(DYCF+DYFA))) 

. -xywab*CCOEF*(DYAB/SAB*DXAD - 2./3.*DXAB/SAB*DYAD) 

. -xywcf*CCOEF*(DYCA/SAD*DXCF - 2./3.*DXCA/SAD*DYCF) 

. -xywfa*CCOEF*(DYCA/SAD*DXFA - 2./3.*DXCA/SAD*DYFA) 

. -xyicf*CCOEF*(DYCA/SAD*DXCF - 2./3.*DXCA/SAD*DYCF) 

. -xyifa*CCOEF*(DYCA/SAD*DXFA - 2./3.*DXCA/SAD*DYFA) 

. +xyeab*CCOEF*(DYAB/SAB*DXAD - 2./3.*DXAB/SAB*DYAD) 

. +xyecf*CCOEF*(DYCA/SAD*DXCF - 2./3.*DXCA/SAD*DYCF) 

. +xyefa*CCOEF*(DYCA/SAD*DXFA - 2./3.*DXCA/SAD*DYFA) 

DELTA(V) 
D 

A(ICA,4,NYM,2)=A(ICA,4,NYM,2)-CCDEF* 
(DYAB/SAB*DYCA+DYBC/SAC*DYCA+DYCA/SAD*(DYCF+DYFA) 

. +4./3.*(DXAB/SAB*DXCA+DXBC/SAC*DXCA+DXCA/SAD*(DXCF+DXFA))) 

. +xywab*CCOEF*(DYAB/SAB*DYAD + 4./3.*DXAB/SAB*DXAD) 

. +xywcf*CCOEF*(DYCA/SAD*DYCF + 4./3.*DXCA/SAD*DXCF) 

. +xywfa*CCOEF*(DYCA/SAD*DYFA + 4./3.*DXCA/SAD*DXFA) 

. +xyicf*CCOEF*(DYCA/SAD*DYCF + 4./3.*DXCA/SAD*DXCF) 

. +xyifa*CCOEF*(DYCA/SAD*DYFA + 4./3.*DXCA/SAD*DXFA) 

. -xyeab*CCOEF*(DYAB/SAB*DYAD + 4./3.*DXAB/SAB*DXAD) 

. -xyecf*CCOEF*(DYCA/SAD*DYCF + 4./3.*DXCA/SAD*DXCF) 

. -xyefa*CCOEF*(DYCA/SAD*DYFA + 4./3.*DXCA/SAD*DXFA) 

DELTA(U) 
E 

A(ICA,5,NYM,1)=xye*CCOEF* 
.(DYAB/SAB*DXAD - 2./3.*DXAB/SAB*DYAD) 

DELTA(V) 
E 

A(ICA,5,NYM,2)=-xye*CCOEF* 
.(DYAB/SAB*DYAD + 4./3.*DXAB/SAB*DXAD) 

DELTA(U) 
F 

A(ICA,6,NYM,1)=xyf*CCOEF* 
.(DYAB/SAB*DXDB - 2./3.*DXAB/SAB*DYDB) 

DELTA(V) 
F 

A(ICA,6,NYM,2)=-xyf*CCOEF* 
.(DYAB/SAB*DYDB + 4./3.*DXAB/SAB*DXDB) 

DELTA(U) 
G 

A(ICA,7,NYM,1)=xyg*CCOEF* 
.(DYBC/SAC*DXBE - 2./3.*DXBC/SAC*DYBE) 



www.manaraa.com

188 

C 
C 

c 
c 

c 
c 

c 
c 

c 
c 

c 
c 

c 
G 

c 
c 

DELTA(V) 
G 

A(ICA,7,NYM,2)=-xyg*GGOEF* 
.(DYBC/SAC*DYBE + 4./3.*DXBC/SAC*DXBE) 

DELTA(U) 
H 

A(ICA,8,NYM,1)=xyh*CCOEF* 
.(DYBC/SAC*DXEC - 2./3.*DXBC/SAC*DYEC) 

DELTA(V) 
H 

A(ICA,8,NYM,2)=-xyh*CCOEF* 
.(DYBC/SAC*DYEC + 4./3.*DXBC/SAC*DXEC) 

DELTA(U)^ 

A(ICA,9,NYM,1)=xyi*CCOEF* 
.(DYCA/SAD*DXCF - 2./3.*DXCA/SAD*DYCF) 

DELTA(V) 

A(ICA,9,NYM,2)=-xyi*CC0EF* 
.(DYCA/SAD*DYCF + 4./3.*DXCA/SAD*DXCF) 

DELTA(U) 

A(ICA,10,NYM,1)=xyj *CCOEF* 
.(DYCA/SAD*DXFA - 2./3.*DXCA/SAD*DYFA) 

DELTA(V) 

A(ICA,10,NYM,2)=-xyj*CC0EF* 
.(DYCA/SAD*DYFA + 4./3.*DXCA/SAD*DXFA) 

RHS(split into 2 parts) 

B(ICA,NYM)=B(ICA,NYM) - CCOEF* 
(-DYAB/SAB*((VPB+VPE)*DYAD+(VPB+VPF)*DYDB 

+(VPA+VPC)*DYBC+(VPA+VPD)*DYCA) 
-DYBC/SAC*((VPA+VPB)*DYAB+(VPC+VPG)*DYBE 

+(VPC+VPH)*DYEC+(VPA+VPD)*DYCA) 

+(UPA+UPC)*DXBC+(UPA+UPD)*DXCA) 
+DYBC/SAC*((UPA+UPB)*DXAB+(UPC+UPG)*DXBE 

+(UPC+UPH)*DXEC+(UPA+UPD)*DXCA) 
+DYCA/SAD*((UPA+UPB)*DXAB+(UPA+UPC)*DXBC 

+(UPD+UPI)*DXCF+(UPD+UPJ)*DXFA)) 



www.manaraa.com

189 

B(ICA,NYM)=B(ICA,NYM) - CCOEF* 
(-4./3.*(DXAB/SAB*((VPB+VPE)*DXAD+(VPB+VPF)*DXDB 

+(VPA+VPC)*DXBC+(VPA+VPD)*DXCA) 
+DXBC/SAC*((VPA+VPB)*DXAB+(VPC+VPG)*DXBE 

+(VPC+VPH)*DXEC+(VPA+VPD)*DXCA) 
+DXCA/SAD*((VPA+VPB)*DXAB+(VPA+VPC)*DXBC 

+(VPD+VPI)*DXCF+(VPD+VPJ)*DXFA)) 
-2./3.*(DXAB/SAB*((UPB+UPE)*DYAD+(UPB+UPF)*DYDB 

+(UPA+UPC)*DYBC+(UPA+UPD)*DYCA) 
+DXBC/SAC*((UPA+UPB)*DYAB+(UPC+UPG)*DYBE 

+(UPC+UPH)*DYEC+(UPA+UPD)*DYCA) 
+DXCA/SAD*((UPA+UPB)*DYAB+(UPA+UPC)*DYBC 

+(UPD+UPI)*DYCF+(UPD+UPJ)*DYFA))) 

-ENERGY EQUATION 

DELTA(T) 
A 

A(ICA,1,NEN,4)=A(ICA,1,NEN,4)-CCDEFF* 
(DYAB/SAB*(DYBC+DYCA) 
+DYBC/SAC*(DYAB+DYCA) 
+DYCA/SAD*(DYAB+DYBC) 
+DXAB/SAB*(DXBC+DXCA) 
+DXBC/SAC*(DXAB+DXCA) 
+DXCA/SAD*(DXAB+DXBC)) 

-xywab*CCOEFF* 
(DYAB/SAB*(DYAD+DYDB)+DYBC/SAC*DYAB+DYCA/SAD*DYAB 
+DXAB/SAB*(DXAD+DXDB)+DXBC/SAC*DXAB+DXCA/SAD*DXAB) 

+xyiab*CCOEFF* 
(DYAB/SAB*(DYAD+DYDB)+DYBC/SAC*DYAB+DYCA/SAD*DYAB 
+DXAB/SAB*(DXAD+DXDB)+DXBC/SAC*DXAB+DXCA/SAD*DXAB 
+DYAB/SAB*DYAD+DXAB/SAB*DXAD 
+DYAB/SAB*DYDB+DXAB/SAB*DXDB) 

-xyeab*CCOEFF* 
(DYAB/SAB*(DYAD+DYDB)+DYBC/SAC*DYAB+DYCA/SAD*DYAB 
+DXAB/SAB*(DXAD+DXDB)+DXBC/SAC*DXAB+DXCA/SAD*DXAB) 

DELTA(T) 
B 

A(ICA,2,NEN,4)=A(ICA,2,NEN,4)-xyb*CCOEFF* 
(DYAB/SAB*(DYAD+DYDB)+DYBC/SAC*DYAB+DYCA/SAD*DYAB 
+DXAB/SAB*(DXAD+DXDB)+DXBC/SAC*DXAB+DXCA/SAD*DXAB) 

-xywad*CCOEFF*(DYAB/SAB*DYAD+DXAB/SAB*DXAD) 
-xywdb*CCOEFF*(DYAB/SAB*DYDB+DXAB/SAB*DXDB) 
+xyiad*CCOEFF*(DYAB/SAB*DYAD+DXAB/SAB*DXAD) 
+xyidb*CCDEFF*(DYAB/SAB*DYDB+DXAB/SAB*DXDB) 
-xyead*CCOEFF*(DYAB/SAB*DYAD+DXAB/SAB*DXAD) 
-xyedb*CCOEFF*(DYAB/SAB*DYDB+DXAB/SAB*DXDB) 

DELTA(T) 



www.manaraa.com

190 

A(ICA,3,NEN,4)=A(ICA,3,NEN,4)-CCOEFF* 
(DYAB/SAB*DYBC+DYBC/SAC*(DYBE+DYEC)+DYCA/SAD*DYBC 
+DXAB/SAB*DXBC+DXBC/SAC*(DXBE+DXEC)+DXCA/SAD*DXBC) 

-xywab*CCOEFF*(DYAB/SAB*DYDB+DXAB/SAB*DXDB) 
-xywbe*CCOEFF*(DYBC/SAC*DYBE+DXBC/SAC*DXBE) 
-xywec*CCOEFF*(DYBC/SAC*DYEC+DXBC/SAC*DXEC) 
+xyibe*CCOEFF*(DYBC/SAC*DYBE+DXBC/SAC*DXBE) 
+xyiec*CCOEFF*(DYBC/SAC*DYEC+DXBC/SAC*DXEC) 
-xyeab*CCOEFF*(DYAB/SAB*DYDB+DXAB/SAB*DXDB) 
-xyebe*CCOEFF*(DYBC/SAC*DYBE+DXBC/SAC*DXBE) 
-xyeec*CCOEFF*(DYBC/SAC*DYEC+DXBC/SAC*DXEC) 

DELTA(T) 
D 

A(ICA,4,NEN,4)=A(ICA,4,NEN,4)-CCOEFF* 
(DYAB/SAB*DYCA+DYBC/SAC*DYCA+DYCA/SAD*(DYCF+DYFA) 
+DXAB/SAB*DXCA+DXBC/SAC*DXCA+DXCA/SAD*(DXCF+DXFA)) 

-xywab*CCOEFF*(DYAB/SAB*DYAD +DXAB/SAB*DXAD) 
-xywcf*CCOEFF*(DYCA/SAD*DYCF+DXCA/SAD*DXCF) 
-xywfa*CCOEFF*(DYCA/SAD*DYFA+DXCA/SAD*DXFA) 
+xyicf*CCOEFF*(DYCA/SAD*DYCF+DXCA/SAD*DXCF) 
+xyifa*CCDEFF*(DYCA/SAD*DYFA+DXCA/SAD*DXFA) 
-xyeab*CCOEFF*(DYAB/SAB*DYAD +DXAB/SAB*DXAD) 
-xyecf*CCOEFF*(DYCA/SAD*DYCF+DXCA/SAD*DXCF) 
-xyefa*CCOEFF*(DYCA/SAD*DYFA+DXCA/SAD*DXFA) 

DELTA(T) 
E 

A(ICA,5,NEN,4)=-xye*CCOEFF* 
(DYAB/SAB*DYAD 
+DXAB/SAB*DXAD) 

DELTA(T) 
F 

A(ICA,6,NEN,4)=-xyf*CCOEFF* 
(DYAB/SAB*DYDB 
+DXAB/SAB*DXDB) 

DELTA(T) 
G 

A(ICA,7,NEN,4)=-xyg*CCOEFF* 
(DYBC/SAC*DYBE 
+DXBC/SAC*DXBE) 

DELTA(T) 
H 

A(ICA,8,NEN,4)=-xyh*CCOEFF* 
(DYBC/SAC*DYEC 
+DXBC/SAC*DXEC) 

DELTA(T) 



www.manaraa.com

191 

A(ICA,9,NEN,4)=-xyi*CCOEFF* 
(DYCA/SAD*DYCF 
+DXCA/SAD+DXCF) 

DELTA(T)^ 

A(ICA,10,NEN,4)=-xyj*CCOEFF* 
(DYCA/SAD*DYFA 
+DXCA/SAD*DXFA) 

RHS(split into 3 parts) 

B(ICA,NEN)=B(ICA,NEN) + CCQEFF* 
(DYAB/SAB*((TPB+TPE)*DYAD+(TPB+TPF)*DYDB 

+(TPA+TPC)*DYBC+(TPA+TPD)*DYCA) 
+DYBC/SAC*((TPA+TPB)*DYAB+(TPC+TPG)*DYBE 

+(TPC+TPH)*DYEC+(TPA+TPD)*DYCA) 
+DYCA/SAD*((TPA+TPB)*DYAB+(TPA+TPC)*DYBC 

+(TPD+TPI)*DYCF+(TPD+TPJ)*DYFA) 
+DXAB/SAB*((TPB+TPE)*DXAD+(TPB+TPF)*DXDB 

+(TPA+TPC)*DXBC+(TPA+TPD)*DXCA) 
+DXBC/SAC*((TPA+TPB)*DXAB+(TPC+TPG)*DXBE 

+(TPC+TPH)*DXEC+(TPA+TPD)*DXCA) 
+DXCA/SAD*((TPA+TPB)*DXAB+(TPA+TPC)*DXBC 

+(TPD+TPI)*DXCF+(TPD+TPJ)*DXFA)) 

Lag dissipation terms 
DUXAB=.5/SAB*((UPB+UPE)*DYAD+(UPB+UPF)*DYDB 

+(UPA+UPC)*DYBC+(UPA+UPD)*DYCA) 
DUYAB=-.5/SAB*((UPB+UPE)*DXAD+(UPB+UPF)*DXDB 

+(UPA+UPC)*DXBC+(UPA+UPD)*DXCA) 
DVXAB=.5/SAB*((VPB+VPE)*DYAD+(VPB+VPF)*DYDB 

+(VPA+VPC)*DYBC+(VPA+VPD)*DYCA) 
DVYAB=-.5/SAB*((VPB+VPE)*DXAD+(VPB+VPF)*DXDB 

+(VPA+VPC)*DXBC+(VPA+VPD)*DXCA) 
DUXBC=.5/SAC*((UPA+UPB)*DYAB+(UPC+UPG)*DYBE 

+(UPC+UPH)*DYEC+(UPA+UPD)*DYCA) 
DUYBC=-.5/SAC*((UPA+UPB)*DXAB+(UPC+UPG)*DXBE 

+(UPC+UPH)*DXEC+(UPA+UPD)*DXCA) 
DVXBC=.5/SAC*((VPA+VPB)*DYAB+(VPC+VPG)*DYBE 

+(VPC+VPH)*DYEC+(VPA+VPD)*DYCA) 
DVYBC=-.5/SAC*((VPA+VPB)*DXAB+(VPC+VPG)*DXBE 

+(VPC+VPH)*DXEC+(VPA+VPD)*DXCA) 
DUXCA=.5/SAD*((UPA+UPB)*DYAB+(UPA+UPC)*DYBC 

+(UPD+UPI)*DYCF+(UPD+UPJ)*DYFA) 
DUYCA=-.5/SAD*((UPA+UPB)*DXAB+(UPA+UPC)*DXBC 

+(UPD+UPI)*DXCF+(UPD+UPJ)*DXFA) 
DVXGA=.5/SAD*((VPA+VPB)*DYAB+(VPA+VPC)*DYBC 

+(VPD+VPI)*DYCF+(VPD+VPJ)*DYFA) 
DVYCA=-.5/SAD*((VPA+VPB)*DXAB+(VPA+VPC)*DXBC 

+(VPD+VPI)*DXCF+(VPD+VPJ)*DXFA) 



www.manaraa.com

192 

B(ICA,NEN)=B(ICA,NEN) - CCOEF* 
. (-(2./3.*(UPA+UPB)*(2.*DUXAB-DVYAB) 
. +(VPA+VPB)*(DVXAB+DUYAB))*DYAB 
. -(2./3.*(UPA+UPC)*(2.*DUXBC-DVYBC) 
. +(VPA+VPC)*(DVXBC+DUYBC))*DYBC 
. -(2./3.*(UPA+UPD)*(2.*DUXCA-DVYCA) 
. +(VPA+VPD)*(DVXCA+DUYCA))*DYCA 
. +((UPA+UPB)*(DVXAB+DUYAB) 
. +2./3.*(VPA+VPB)*(2.*DVYAB-DUXAB))*DXAB 
. +((UPA+UPC)*(DVXBC+DUYBC) 
. +2./3.*(VPA+VPC)*(2.*DVYBC-DUXBC))*DXBC 
. +((UPA+UPD)*(DVXCA+DUYCA) 
. +2./3.*(VPA+VPD)*(2.*DVYCA-DUXCA))*DXCA) 

1 CONTINUE 

RETURN 

*DECK ENSCALE 

.CALL Mr™" 

C Rescales the energy equation by Cp 

RCP=1./CP 
DO 1 L=l,4 
DO 1 J=1,NCPL 
DO 1 1=1,NCT 
A(I,J,NEN,L)=A(I,J,NEN,L)*RCP 

1 CONTINUE 

DO 2 1=1,NCT 
B(I,NEN)=B(I,NEN)*RCP 

2 CONTINUE 

RETURN 
END 

*DECK SOLVE 

*CALL COMMz""^^^^ SOLVE 
IF(NSOLVE.EQ.O)CALL GAUSSV 
IF(NS0LVE.EQ.1)CALL BLOCKGS 
IF(NS0LVE.EQ.2)CALL BRTCC 
IF(NS0LVE.Eq.3)CALL BCGS 



www.manaraa.com

193 

*DECK GAUSSV 
C Computes the solution to Ax=b using point Gauss-Seidel iteration. 
C First all blocks except the diagonal block are moved to the RHS. 
C The off-diagonal terms of the diagonal block are also moved to 
C the RHS. Then the solution is given by the diagonal terms of the 
C diagonal block. 
*CALL COMMZ 

C Initial guess * 

DO 25 1=1,NOT 
XI(I,1)=0.0D0 
XI(I,2)=0.0D0 
XI(I,3)=0.0D0 
XI(I,4)=0.0D0 

25 CONTINUE 

C Gauss-Seidel iteration * 

NITER=0 
DO 19 ITER=1,NSI 

I1=NUMEL(I,1) 
I2=NUMEL(I,2) 
I3=NUMEL(I,3) 
I4=NUMEL(I,4) 
I5=NUMEL(I,5) 
I6=NUMEL(I,6) 
I7=NUMEL(I,7) 
I8=NUMEL(I,8) 
I9=NUMEL(I,9) 
I10=NUMEL(I,10) 
X10LD=XI(I1,1) 
X20LD=XI(I1,2) 
X30LD=XI(I1,3) 
X40LD=XI(I1,4) 
XI(I1,1)=(B(I1,1) 

-A(I1,1,1,2)*XI(I1.2)-A(I1,1.1.3)*XI(I1,3) 
.-A(Il,l,l,4)*XI(I1.4)-A(I1.2,l,i)*XI(I2,l)-A(Il,2,1.2)*XI(I2,2) 
.-A(I1,2,1,3)*XI(I2,3)-A(I1,2,1,4)*XI(I2,4)-A(I1,3,1,1)*XI(I3,1) 
.-A(I1,3,1,2)*XI(I3,2)-A(I1.3,1,3)*XI(I3,3)-A(I1.3,1,4)*XI(I3,4) 
.-A(I1,4,1,1)*XI(I4,1)-A(I1,4,1,2)*XI(I4,2)-A(I1,4,1,3)*XI(I4,3) 
.-A(H,4,1,4)*XI(I4,4)-A(I1,5,1,1)*XI(I5,1)-A(I1,5,1,2)*XI(I5,2) 
.-A(I1,5,1,3)*XI(I5,3)-A(I1,5,1,4)*XI(I5,4)-A(I1,6,1,1)*XI(I6,1) 
.-A(I1,6,1,2)*XI(I6,2)-A(I1,6,1,3)*XI(I6,3)-A(I1,6,1.4)*XI(I6,4) 
.-A(I1,7.1,1)*XI(I7.1)-A(I1,7,1,2)*XI(I7,2)-A(I1,7,1,3)*XI(I7,3) 
.-A(I1,7,1,4)*XI(I7,4)-A(I1,8,1,1)*XI(I8,1)-A(I1,8,1,2)*XI(I8,2) 



www.manaraa.com

194 

-A(I1,8,1,3)*XI(I8,3)-A(I1,8.1,4)*XI(I8,4)-A(I1,9,1,1)*XI(I9,1) 
-A(I1,9,1,2)*XI(I9,2)-A(I1,9,1,3)*XI(I9,3)-A(I1,9,1,4)*XI(I9,4) 
-A(I1,10,1,1)*XI(I10,1)-A(I1,10,1,2)*XI(I10,2) 
-A(I1,10,1,3)*XI(I10,3)-A(I1,10,1,4)*XI(I10,4))/A(I1,1,1,1) 

XlCll 
-A(I1,1,2 
-A(I1,1,2 
-A(I1,2,2 
-A(I1,3,2 
-A(I1,4,2 
-A(I1,4,2 
-A(I1.5,2 
-A(I1,6,2 
-A(I1,7,2 
-A(I1,7,2 
-A(I1,8,2 
-A(I1,9.2 
-A(I1,10, 
-A(I1,10, 

,2)=(B(I1,2) 
,1)*XI(I1,1) 
,4)*XI(I1,4) 
,3)*XI(I2,3) 
,2)*XI(I3,2) 
,1)*XI(I4,1) 
,4)*XI(I4,4) 
,3)*XI(I5,3) 
,2)*XI(I6,2) 
,1)*XI(I7,1) 
,4)*XI(I7.4) 
,3)*XI(I8,3) 
,2)*XI(I9,2) 
2,1)*XI(I10, 
2,3)*XI(I10, 

XI(I1,3)=(B(I1,3) 
-A(I1,1,3,1)*XI(I1,1) 
-A(I1,1,3,4)*XI(I1,4) 
-A(I1,2,3,3)*XI(I2,3) 
-A(I1,3,3,2)*XI(I3,2) 
-A(I1,4,3,1)*XI(I4,1) 
-A(I1,4,3,4)*XI(I4,4) 
-A(I1,5,3,3)*XI(I5,3) 
-A(I1,6,3,2)*XI(I6,2) 
-A(I1,7,3,1)*XI(I7,1) 
-A(I1,7,3,4)*XI(I7,4) 
-A(I1,8,3,3)*XI(I8,3) 
-A(I1,9,3,2)*XI(I9,2) 
-A(I1,10,3,1)*XI(I10, 
-A(I1,10,3,3)*XI(I10, 

XI(I1,4)=(B(I1,4) 
-A(I1,1,4,1)*XI(I1,1) 

-A(I1,2,4,3)*XI(I2,3) 
-A(I1,3,4,2)*XI(I3,2) 
-A(I1,4,4,1)*XI(I4,1) 
-A(I1,4,4,4)*XI(I4,4) 
-A(I1,5,4,3)*XI(I5,3) 
-A(I1,6,4,2)*XI(I6,2) 
-A(I1,7,4,1)*XI(I7,1) 
-A(I1,7,4,4)*XI(I7,4) 
-A(I1,8,4,3)*XI(I8,3) 
-A(I1,9,4,2)*XI(I9,2) 
-A(I1,10,4,1)*XI(I10, 
-A(I1,10,4,3)*XI(I10, 

-A(I1,2 
-A(I1,2 
-A(I1,3 
-A(I1,4 
-A(I1,5 
-A(I1,5 
-A(I1,6 
-A(I1,7 
-A(I1,8 
-A(I1,8 
-A(I1,9 
1)-A(I1 
3)-A(Il 

-A(I1,1 
-A(I1,2 
-A(I1,2 
-A(I1,3 
-A(I1,4 
-A(I1,5 
-A(I1,5 
-A(I1,6 
-A(I1,7 
-A(I1,8 
-A(I1,8 
-A(I1,9 
1)-A(I1 
3)-A(Il 

-A(I1,1 
-A(I1,2 
-A(I1,2 
-A(I1,3 
-A(I1,4 
-A(I1,5 
-A(I1,5 
-A(I1,6 
-A(I1,7 
-A(I1,8 
-A(I1,8 
-A(I1,9 
1)-A(I1 
3)-A(Il 

-A(I1,1,2,3)*XI(I1,3) 
2.1)*XI(I2,1)-A(I1,2,2,2)*XI(I2,2) 
2,4)*XI(I2,4)-A(I1,3,2,1)*XI(I3,1) 
2.3)*XI(I3,3)-A(I1,3,2,4)*XI(I3,4) 
2.2)*XI(I4,2)-A(I1,4,2,3)*XI(I4,3) 
2.1)*XI(I5,1)-A(I1,5,2,2)*XI(I5,2) 
2.4)*XI(I5,4)-A(I1,6,2,1)*XI(I6,1) 
2.3)*XI(I6,3)-A(I1,6,2,4)*XI(I6,4) 
2.2)*XI(I7,2)-A(I1,7,2,3)*XI(I7,3) 
2,1)*XI(I8,1)-A(I1,8,2,2)*XI(I8,2) 
2.4)*XI(I8,4)-A(I1,9,2,1)*XI(I9,1) 
2.3)*XI(I9,3)-A(I1,9,2,4)*XI(I9,4) 
10,2,2)*XI(I10,2) 
10,2,4)*XI(I10,4))/A(I1,1,2,2) 

3.2)*XI(I1,2) 
3.1)*XI(I2,1)-
3,4)*XI(I2,4) 
3.3)*XI(I3,3) 
3.2)*XI(I4,2) 
3.1)*XI(I5,1) 
3.4)*XI(I5,4)-
3.3)*XI(I6,3) 
3.2)*XI(I7,2) 
3.1)*XI(I8,1)-
3.4)*XI(I8,4)-
3.3)*XI(I9,3)-
10,3,2)*XI(I10 
10,3,4)*XI(I10 

4.2)*XI(I1,2)-
4.1)*XI(I2,1) 
4.4)*XI(I2,4)-
4.3)*XI(I3,3)-
4.2)*XI(I4,2)-
4.1)*XI(I5,1)-
4.4)*XI(I5,4)-
4.3)*XI(I6,3)-
4.2)*XI(I7,2)-
4,1)*XI(I8,1)-
4.4)*XI(I8,4) 
4.3)*XI(I9,3)-
10,4,2)*XI(I10 
10,4,4)*XI(I10 

A(I1,2,3, 
A(I1,3,3, 
A(I1,3,3, 
A(I1,4,3, 
A(I1,5,3, 
A(I1,6,3, 
A(I1,6,3, 
A(I1,7,3, 
A(I1,8,3, 
A(I1,9,3, 
A(I1,9,3, 
, 2 )  
,4))/A(Il 

2)*XI(I2,2) 
1)*XI(I3,1) 
4)*XI(I3,4) 
3)*XI(I4,3) 
2)*XI(I5,2) 
1)*XI(I6,1) 
4)*XI(I6,4) 
3)*XI(I7,3) 
2)*XI(I8,2) 
1)*XI(I9,1) 
4)*XI(I9,4) 

,1,3,3) 

A(I1,1,4 
A(I1,2,4 
A(I1,3,4 
A(I1,3,4 
A(I1,4,4 
A(I1,5,4 
A(I1,6,4 
A(I1,6,4 
A(I1,7,4 
A(I1,8,4 
A(I1,9,4 
A(I1,9,4 
, 2 )  
,4))/A(I 

,3)*XI(I1,3) 
,2)*XI(I2,2) 
,1)*XI(I3,1) 
,4)*XI(I3,4) 
,3)*XI(I4,3) 
,2)*XI(I5,2) 
,1)*XI(I6,1) 
,4)*XI(I6,4) 
,3)*XI(I7,3) 
,2)*XI(I8,2) 
,1)*XI(I9,1) 
,4)*XI(I9.4) 

1,1,4,4) 

DX1=ABS(XI(II,1)-XIOLD) 



www.manaraa.com

195 

DX2=ABS(XI(I1,2)-X20LD) 
DX3=ABS(XI(I1,3)-X30LD) 
DX4=ABS(XI(I1,4)-X40LD) 

DXMAX=AMAX1(DXMAX,DXl,DX2,DX3,DX4) 
10 CONTINUE 

IF(DXMAX.LE.1.E-6)GD TO 20 
19 CONTINUE 
20 PRINT*,'Number of Gauss-Seidel iterations =',NITER 

RETURN 
END 

•DECK BLOCKGS 
SUBROUTINE BLOCKGS 

C Computes the solution to Ax=b using block Gauss-Seidel iteration. 
C First all blocks except the diagonal block are moved to the RHS. 
C Then the remaining diagonal block is reduced by LU decomposition. 

*CALL COMMZ 
C********************** 
C Initial guess * 
C********************** 

DO 1 1=1,NCT 
XI(I,1)=0.0D0 
XI(I,2)=0.0D0 
XI(I,3)=0.0D0 
XI(I,4)=0.0D0 

1 CONTINUE 

C************************************ 
C Block Gauss-Seidel iteration * 
C************************************ 

NITER=0 
DO 2 ITER=1,NSI 

wk; 
I1=NUMEL(I,1) 
I2=NUMEL(I,2) 
I3=NUMEL(I,3) 
I4=NUMEL(I,4) 
I5=NUMEL(I,5) 
I6=NUMEL(I,6) 
I7=NUMEL(I,7) 
I8=NUMEL(I,8) 
I9=NUMEL(I,9) 
I10=NUMEL(I,10) 
X10LD=XI(I1,1) 
X20LD=XI(I1,2) 
X30LD=XI(I1,3) 
X40LD=XI(I1,4) 



www.manaraa.com

196 

C*********************************************** 
C Compute new RHS (Move all blocks to rhs * 
C except the diagonal block). * 
C*********************************************** 

XI (II 
-A(I1,2,1 
-A(I1,2,1 
-A(I1,3,1 
-A(I1,4,1 
-A(I1,4,1 
-A(I1,5,1 
-A(I1,6,1 
-A(I1,7,1 
-A(I1,7,1 
-A(I1,8,1 
-A(I1,9,1 
-A(I1,10, 
-A(I1,10, 

1)=B(I1,1) 
1)*XI 
3)*XI 
2)*XI 
1)*XI 
4)*XI 
3)*XI 
2)*XI 
1)*XI 
4)*XI 
3)*XI 
2)*XI 

i , i )*x 
1,3)*X 

XI(I1,2)=B( 
-A(I1,2,2,1)*XI 
-A(I1,2,2,3)*XI 
-A(I1,3,2,2)*XI 
-A(I1,4,2,1)*XI 
-A(I1,4,2,4)*XI 
-A(I1,5,2,3)*XI 
-A(I1,6,2,2)*XI 
-A(I1,7,2,1)*XI 
-A(I1,7,2,4)*XI 
-A(I1,8,2,3)*XI 
-A(I1,9,2,2)*XI 
-A(I1,10,2,1)*X 
-A(I1,10,2,3)*X 

XI(I1,3)=B( 
-A(I1,2,3,1)*XI 
-A(I1,2,3,3)*XI 
-A(I1,3,3,2)*XI 
-A(I1,4,3,1)*XI 
-A(I1,4,3,4)*XI 
-A(I1,5,3,3)*XI 
-A(I1,6,3,2)*XI 
-A(I1,7,3,1)*XI 
-A(I1,7,3,4)*XI 
-A(I1,8,3,3)*XI 
-A(I1,9,3,2)*XI 
-A(I1,10,3,1)*X 
-A(I1,10,3,3)*X 

XI(I1,4)=B( 
-A(I1,2,4,1)*XI 
-A(I1,2,4,3)*XI 
-A(I1,3,4,2)*XI 

12,1) 
12.3) 
13.2) 
14.1) 
14.4) 
15.3) 
16.2) 
17.1) 
17.4) 
18,3) 
19.2) 
(110, 
(110, 

-A(I1,2 
-A(I1,2 
-A(I1,3 
-A(I1,4 
-A(I1,5 
-A(I1,5 
-A(I1,6 
-A(I1,7 
-A(I1,8 
-A(I1,8 
-A(I1,9 
1)-A(I1 
3)-A(Il 

1 , 2 )  
12.1)-A(I1,2 
12.3)-A(I1,2 
13.2)-A(I1,3 
14.1)-A(I1,4 
14.4)-A(I1,5 
15.3)-A(I1,5 
16.2)-A(I1,6 
17.1)-A(I1,7 
17.4)-A(I1,8 
18.3)-A(I1,8 
19.2)-A(I1,9 
(I10,1)-A(I1 
(I10,3)-A(I1 

1,3) 
12,1)  
12.3) 
13.2) 
14.1) 
14.4) 
15.3) 
16.2)  
17.1) 
17.4) 
18,3) 
19.2) 
(110, 
(110, 

-A(I1,2 
-A(I1,2 
-A(I1,3 
-A(I1,4 
-A(I1,5 
-A(I1,5 
-A(I1,6 
-A(I1,7 
-A(I1,8 
-A(I1,8 
-A(I1,9 
1)-A(I1 
3)-A(Il 

1.4) 
12.1)-A(I1,2 
I2,3)-A(I1,2 
13.2)-A(I1,3 

1.2)*XI(I2,2) 
1,4)*XI(I2,4)-A(I1 
1.3)*XI(I3,3)-A(I1 
1.2)*XI(I4,2)-A(I1 
1.1)*XI(I5,1)-A(I1 
1.4)*XI(I5,4)-A(I1 
1.3)*XI(I6,3)-A(I1 
1.2)*XI(I7,2)-A(I1 
1.1)*XI(I8,1)-A(I1 
1.4)*XI(I8,4)-A(I1 
1.3)*XI(I9,3)-A(I1 
10,1,2)*XI(I10,2) 
10,1,4)*XI(I10,4) 

2.2)*XI(I2,2) 
2.4)*XI(I2,4)-A(I1 
2.3)*XI(I3,3)-A(I1 
2.2)*XI(I4,2)-A(I1 
2.1)*XI(I5,1)-A(I1 
2.4)*XI(I5,4)-A(I1 
2.3)*XI(I6,3)-A(I1 
2.2)*XI(I7,2)-A(I1 
2.1)*XI(I8,1)-A(I1 
2.4)*XI(I8,4)-A(I1 
2.3)*XI(I9,3)-A(I1 
10,2,2)*XI(I10,2) 
10,2,4)*XI(I10,4) 

3.2)*XI(I2,2) 
3.4)*XI(I2,4)-A(I1 
3.3)*XI(I3,3)-A(I1 
3.2)*XI(I4,2)-A(I1 
3.1)*XI(I5,1)-A(I1 
3.4)*XI(I5,4)-A(I1 
3.3)*XI(I6,3)-A(I1 
3.2)*XI(I7,2)-A(I1 
3,1)*XI(I8,1)-A(I1 
3.4)*XI(I8,4)-A(I1 
3.3)*XI(I9.3)-A(I1 
10,3,2)*XI(I10,2) 
10,3,4)*XI(I10,4) 

,3,1,1)*XI 
,3,1,4)*XI 
,4,1,3)*XI 
,5,1,2)*XI 
,6,1,1)*XI 
,6,1,4)*XI 
,7,1,3)*XI 
,8,1,2)*XI 
,9,1,1)*XI 
,9,1,4)*XI 

13.1) 
13,4) 
14.3) 
15.2) 
16,1)  
16.4) 
17.3) 
18,2) 
19,1) 
19.4) 

,3,2,1)*XI(I3,1) 
,3,2,4)*XI(I3,4) 
,4,2,3)*XI(I4,3) 
,5,2,2)*XI(I5,2) 
,6,2,1)*XI(I6,1) 
.6,2,4)*XI(I6,4) 
,7,2,3)*XI(I7,3) 
,8,2,2)*XI(I8,2) 
,9,2,1)*XI(I9,1) 
,9,2,4)*XI(I9,4) 

,3,3,1)*XI(I3,1) 
,3,3,4)*XI(I3,4) 
,4,3,3)*XI(I4,3) 
,5,3,2)*XI(I5,2) 
,6,3,1)*XI(I6,1) 
,6,3,4)*XI(I6,4) 
,7,3,3)*XI(I7,3) 
,8,3,2)*XI(I8,2) 
,9,3,1)*XI(I9,1) 
,9,3,4)*XI(I9,4) 

4.2)*XI(I2,2) 
4,4)*XI(I2,4)-A(I1,3,4,1)*XI(I3,1) 
4.3)*XI(I3,3)-A(I1,3,4,4)*XI(I3,4) 



www.manaraa.com

197 

.-A(I1,4,4,1)*XI(I4,1)-A(I1,4,4,2)*XI(I4,2)-A(I1,4,4,3)*XI(I4,3) 

.-A(I1,4,4,4)*XI(I4,4)-A(I1,5,4,1)*XI(I5,1)-A(I1,5,4,2)*XI(I5,2) 

.-A(I1,5,4,3)*XI(I5,3)-A(I1,5,4,4)*XI(I5,4)-A(I1,6,4,1)*XI(I6,1) 

.-A(I1,6,4,2)*XI(I6,2)-A(I1,6,4,3)*XI(I6,3)-A(I1,6,4,4)*XI(I6,4) 

.-A(I1,7,4,1)*XI(I7,1)-A(I1,7,4,2)*XI(I7,2)-A(I1,7,4,3)*XI(I7,3) 

.-A(I1,7,4,4)*XI(I7,4)-A(I1,8,4,1)*XI(I8,1)-A(I1,8,4,2)*XI(I8,2) 

.-A(I1,8,4,3)*XI(I8,3)-A(I1,8,4,4)*XI(I8,4)-A(I1,9,4,1)*XI(I9,1) 

.-A(I1,9,4,2)*XI(I9,2)-A(I1,9,4,3)*XI(I9,3)-A(I1,9,4,4)*XI(I9,4) 

.-A(I1,10,4,1)*XI(I10,1)-A(I1,10,4,2)*XI(I10,2) 

.-A(I1,10,4,3)*XI(I10,3)-A(I1,10,4,4)*XI(I10,4) 

C**************************************** 
C* Perform LU decomposition euxd solve. * 

AL11=A(I1,1,1,1) 
AL21=A(I1,1,2,1) 
AL31=A(I1,1,3,1) 
AL41=A(I1,1,4,1) 

AU11=1, 
AU12=A(I1,1,1,2)/AL11 
AU13=A(I1,1,1,3)/AL11 
AU14=A(I1,1,1,4)/AL11 

AL22=A(II,1,2,2)-AL21*AU12 
AL32=A(I1,1,3,2)-AL31*AU12 
AL42=A(I1,1,4,2)-AL41*AU12 

AU22=1. 
AU23=(A(I1,1,2,3)-AL21*AU13)/AL22 
AU24=(A(II,1,2,4)-AL21*AU14)/AL22 

AL33=A(I1,1,3,3)-AL31*AU13-AL32*AU23 
AL43=A(I1,1,4,3)-AL41*AU13-AL42*AU23 

AU33=1. 
AU34=(A(I1,1,3,4)-AL31*AU14-AL32*AU24)/AL33 

AL44=A(I1,1,4,4)-AL41*AU14-AL42*AU24-AL43*AU34 

AU44=1. 

C* Forward substitution * 

XI(I1,1)=XI(I1,1)/AL11 
XI(I1,2)=(XI(I1,2)-AL21*XI(I1,1))/AL22 
XI(I1,3)=(XI(I1,3)-AL31*XI(I1,1)-AL32*XI(I1,2))/AL33 
XI(I1,4)=(XI(I1,4)-AL41*XI(I1,1)-AL42*XI(I1,2) 

-AL43*XI(I1,3))/AL44 

C* Backward substitution * 
C*************************** 

XI(I1,4)=XI(I1,4) 
XI(I1,3)=XI(I1,3)-AU34*XI(11,4) 



www.manaraa.com

198 

XI(I1,2)=XI(I1,2)-AU23*XI(I1,3)-AU24*XI(I1.4) 
XI(I1,1)=XI(I1,1)-AU12*XI(I1,2)-AU13*XI(I1,3)-AU14*XI(I1,4) 

DX1=ABS(XI(I1,1)-X10LD) 
DX2=ABS(XI(11,2)-X20LD) 
DX3=ABS(XI(II,3)-X30LD) 
DX4=ABS(XI(I1,4)-X40LD) 

DXMAX=AMAX1(DXMAX,DXl,DX2,DX3,DX4) 
3 CONTINUE 

IF(DXMAX.LE.1.E-6)G0 TO 4 
2 CONTINUE 
4 PRINT*,'Number of Gauss-Seidel iterations =',NITER 

RETURN 
END 

*DECK BCGS 
SUBROUTINE BCGS 

C Computes the solution to Ax=b using block Gauss-Seidel iteration. 
C First all blocks except the diagonal block are moved to the RHS. 
C Then the remaining diagonal block is reduced by LU decomposition. 
C Cell coloring is used to vectorize the solver over its level 1 
C neighbors. 

*CALL COMMZ 

C Initial guess * 

DO 1 1=1,NCT 
XI(I,1)=0.0D0 
XI(I,2)=0.0D0 
XI(I,3)=0.0D0 
XI(I,4)=0.0D0 

1 CONTINUE 

C Block Gauss-Seidel iteration * 
C************************************ 

Bo^fîTER'l.NSI 

C Cell coloring loop; four colors. 
DO 3 K=l,4 
NCLOOP=NRGBY(K) 

C Vectorize the next loop for each color 
CDIB. IVggP^ 

I=NCOLOR(K,N) 
I1=NUMEL(I,1) 
I2=NUMEL(I,2) 
I3=NUMEL(I,3) 



www.manaraa.com

199 

I4=NUMEL(I,4) 
I5=NUMEL(I,5) 
I6=NUMEL(I,6) 
I7=NUMEL(I,7) 
I8=NUMEL(I,8) 
I9=NUMEL(I,9) 
I10=NUMEL(I,10) 
X10LD=XI(I1.1) 
X20LD=XI(I1,2) 
X30LD=XI(I1,3) 
X40LD=XI(I1,4) 

C*********************************************** 
C Compute new RHS (Move all blocks to rhs * 
C except the diagonal block). * 
C*********************************************** 

XI(I1 
-A(I1,2,1 
-A(I1,2,1 
-A(I1,3,1 
-A(I1,4,1 
-A(I1,4,1 
-A(I1,5,1 
-A(I1,6,1 
-A(I1,7,1 
-A(I1,7,1 
-A(I1,8,1 
-A(I1,9,1 
-A(I1,10, 
-A(I1,10, 

,1)*XI 
,3)*XI 
,2)*XI 
,1)*XI 
,4)*XI 
,3)*XI 
,2)*XI 
,1)*XI 
,4)*XI 
,3)*XI 
,2)*XI 
1,1)*X 
1,3)*X 

XI(I1,2)=B( 
-A(I1,2,2,1)*XI 
-A(I1,2,2,3)*XI 
-A(I1,3,2,2)*XI 
-A(I1,4,2,1)*XI 
-A(I1,4,2,4)*XI 
-A(I1,5,2,3)*XI 
-A(I1,6,2,2)*XI 
-A(I1,7,2,1)*XI 
-A(I1,7,2,4)*XI 
-A(I1,8,2,3)*XI 
-A(I1,9,2,2)*XI 
-A(I1,10,2,1)*X 
-A(I1,10,2,3)*X 

XI(I1,3)=B( 
-A(H,2,3,1)*XI 
-A(I1,2,3,3)*XI 
-A(I1,3,3,2)*XI 
-A(I1,4,3,1)*XI 
-A(I1,4,3,4)*XI 
-A(I1,5,3,3)*XI 

1 .1 )  
12,1)  
12.3) 
13.2) 
14.1) 
14.4) 
15.3) 
16.2)  
17.1) 
17.4) 
18,3) 
19.2) 
(110, 
(110, 

-A(I1,2 
-A(I1,2 
-A(I1,3 
-A(I1,4 
-A(I1,5 
-A(I1,5 
-A(I1,6 
-A(I1,7 
-A(I1,8 
-A(I1,8 
-A(I1.9 
1)-A(I1 
3)-A(Il 

1 , 2 )  
12.1)-A(I1,2 
12.3)-A(I1,2 
13.2)-A(I1,3 
14.1)-A(I1,4 
14.4)-A(I1,5 
15.3)-A(I1,5 
16.2)-A(I1,6 
17.1)-A(I1,7 
17.4)-A(I1,8 
18.3)-A(I1,8 
19.2)-A(I1,9 
(I10,1)-A(I1 
(I10,3)-A(I1 

1,3) 
12.1)-A(I1,2 
12.3)-A(I1,2 
13.2)-A(I1,3 
I4,1)-A(I1,4 
14.4)-A(I1,5 
15.3)-A(I1,5 

1.2)*XI(I2,2) 
1,4)*XI(I2,4)-A(I1 
1.3)*XI(I3,3)-A(I1 
1.2)*XI(I4,2)-A(I1 
1.1)*XI(I5,1)-A(I1 
1.4)*XI(I5,4)-A(I1 
1.3)*XI(I6,3)-A(I1 
1.2)*XI(I7,2)-A(I1 
1.1)*XI(I8,1)-A(I1 
1.4)*XI(I8,4)-A(I1 
1.3)*XI(I9,3)-A(I1 
10,1,2)*XI(I10,2) 
10,1,4)*XI(I10,4) 

2.2)*XI(I2,2) 
2.4)*XI(I2,4)-A(I1 
2.3)*XI(I3,3)-A(I1 
2.2)*XI(I4,2)-A(I1 
2.1)*XI(I5,1)-A(I1 
2.4)*XI(I5,4)-A(I1 
2.3)*XI(I6,3)-A(I1 
2.2)*XI(I7,2)-A(I1 
2,1)*XI(I8,1)-A(I1 
2.4)*XI(I8,4)-A(I1 
2.3)*XI(I9,3)-A(I1 
10,2,2)*XI(I10,2) 
10,2,4)*XI(I10,4) 

,3,1,1)*XI(I3,1) 
,3,1,4)*XI(I3,4) 
,4,1,3)*XI(I4,3) 
,5,1,2)*XI(I5,2) 
,6,1,1)*XI(I6,1) 
,6,1,4)*XI(I6,4) 
,7,1,3)*XI(I7,3) 
,8,1,2)*XI(I8,2) 
,9,1,1)*XI(I9,1) 
,9.1,4)*XI(I9,4) 

,3,2,1)*XI 
,3,2,4)*XI 
,4,2,3)*XI 
,5,2,2)*XI 
,6,2,1)*XI 
,6,2,4)*XI 
,7,2,3)*XI 
,8,2,2)*XI 
,9,2,1)*XI 
,9,2,4)*XI 

13.1) 
13,4) 
14.3) 
15.2) 
1 6 , 1 )  
16.4) 
17.3) 
18,2)  
19,1) 
19.4) 

3.2)*XI(I2,2) 
3,4)*XI(I2,4)-A(I1,3,3,1)*XI(I3,1) 
3.3)*XI(I3,3)-A(I1,3,3,4)*XI(I3,4) 
3,2)*XI(I4,2)-A(I1,4,3.3)*XI(I4,3) 
3,1)*XI(I5,1)-A(I1,5,3,2)*XI(I5,2) 
3.4)*XI(I5,4)-A(I1,6,3,1)*XI(I6,1) 



www.manaraa.com

200 

.-A(I1,6,3,2)*XI(I6,2)-A(I1,6,3,3)*XI(I6,3)-A(I1,6,3,4)*XI(I6,4) 

.-A(I1,7,3,1)*XI(I7,1)-A(I1,7,3,2)*XI(I7,2)-A(I1,7,3,3)*XI(I7,3) 

.-A(I1,7,3,4)*XI(I7,4)-A(I1,8,3,1)*XI(I8,1)-A(I1,8,3,2)*XI(I8,2) 

.-A(I1,8,3,3)*XI(I8,3)-A(I1,8,3,4)*XI(I8,4)-A(I1,9,3,1)*XI(I9,1) 

.-A(I1,9,3,2)*XI(I9,2)-A(I1,9,3,3)*XI(I9,3)-A(I1,9,3,4)*XI(I9,4) 

.-A(I1,10,3,1)*XI(I10,1)-A(I1,10,3,2)*XI(I10,2) 

.-A(I1,10,3,3)*XI(I10,3)-A(I1,10,3,4)*XI(I10,4) 

XI(I1,4)=B(I1,4) 
.-A(I1,2,4,1)*XI(I2,1)-A(I1,2,4,2)*XI(I2,2) 
.-A(I1,2,4,3)*XI(I2,3)-A(I1,2,4,4)*XI(I2,4)-A(I1,3,4,1)*XI(I3,1) 
.-A(I1,3.4,2)*XI(I3,2)-A(I1,3,4.3)*XI(I3,3)-A(I1,3.4,4)*XI(I3,4) 
.-A(I1,4,4,1)*XI(I4,1)-A(I1,4,4,2)*XI(I4,2)-A(I1,4,4,3)*XI(I4,3) 
.-A(I1,4,4,4)*XI(I4,4)-A(I1,5,4,1)*XI(I5,1)-A(I1,5,4,2)*XI(I5,2) 
.-A(I1,5,4,3)*XI(I5,3)-A(I1,5,4,4)*XI(I5,4)-A(I1,6,4,1)*XI(I6,1) 
.-A(I1,6,4,2)*XI(I6,2)-A(I1,6,4,3)*XI(I6,3)-A(I1,6,4,4)*XI(I6,4) 
.-A(I1,7,4,1)*XI(I7,1)-A(I1,7,4,2)*XI(I7,2)-A(I1,7,4,3)*XI(I7,3) 
.-A(I1,7,4,4)*XI(I7,4)-A(I1,8,4,1)*XI(I8,1)-A(I1,8,4,2)*XI(I8,2) 
.-A(I1,8,4,3)*XI(I8,3)-A(I1,8,4,4)*XI(I8,4)-A(I1,9,4,1)*XI(I9,1) 
.-A(I1,9,4,2)*XI(I9,2)-A(I1,9,4,3)*XI(I9,3)-A(I1,9,4,4)*XI(I9,4) 
.-A(I1,10,4,1)*XI(I10,1)-A(I1,10,4,2)*XI(I10,2) 
.-A(I1,10,4,3)*XI(I10,3)-A(I1,10,4,4)*XI(I10,4) 

C**************************************** 
C* Perform LU decomposition and solve. * 

AL11=A(I1,1,1,1) 
AL21=A(I1,1,2,1) 
AL31=A(I1,1,3,1) 
AL41=A(I1,1,4,1) 

AU11=1. 
AU12=A(I1,1,1,2)/AL11 
AU13=A(I1,1,1,3)/AL11 
AU14=A(I1,1.1,4)/AL11 

AL22=A(I1,1,2,2)-AL21*AU12 
AL32=A(I1,1,3,2)-AL31*AU12 
AL42=A(I1,1,4,2)-AL41*AU12 

AU22=1. 
AU23=(A(I1,1,2,3)-AL21*AU13)/AL22 
AU24=(A(II,1,2,4)-AL21*AU14)/AL22 

AL33=A(11,1,3,3)-AL31*AU13-AL32*AU23 
AL43=A(I1,1,4,3)-AL41*AU13-AL42*AU23 

AU33=1. 
AU34=(A(I1,1,3,4)-AL31*AU14-AL32*AU24)/AL33 

AL44=A(I1,1,4,4)-AL41*AU14-AL42*AU24-AL43*AU34 

AU44=1. 

C* Forward substitution * 



www.manaraa.com

201 

XI(I1,1)=XI(I1,1)/AL11 
XI(I1,2)=(XI(I1,2)-AL21*XI(I1,1))/AL22 
XI(I1,3)=(XI(I1,3)-AL31*XI(I1,1)-AL32*XI(11,2))/AL33 
XI(I1,4)=(XI(I1,4)-AL41*XI(II,1)-AL42*XI(11,2) 

-AL43*XI(I1,3))/AL44 

C* Backward substitution * 
C*************************** 

XI(I1,4)=XI(I1,4) 
XI(I1,3)=XI(I1,3)-AU34*XI(11,4) 
XI(I1,2)=XI(I1,2)-AU23*XI(11,3)-AU24*XI(I1,4) 
XI(II,1)=XI(II,1)-AU12*XI(11,2)-AU13*XI(I1,3)-AU14*XI(11,4) 

DX1=ABS(XI(II,1)-XIOLD) 
DX2=ABS(XI(I1,2)-X20LD) 
DX3=ABS(XI(I1,3)-X30LD) 
DX4=ABS(XI(I1,4)-X40LD) 

DXMAX=AMAX1(DXMAX,DXl,DX2,DX3,DX4) 
3 CONTINUE 

2 CONTINUE 
PRINT*Number of Gauss-Seidel iterations =',NITER 

*DECK BMCO 

.CALL W"® 
c Block Matrix Column Ordering 
c sorts the block matrix in column order 

ICC=0 
DO 1 ICG=1,NCT 
IP=0 
DO 2 1=1,NCT 
DO 2 J=1,NCPL 
IF(NUMEL(I,J).EQ.ICG) THEN 
ICC=ICC+1 
IP=IP+1 
IB(ICG,IP)=I 
JB(ICG,IP)=J 
ENDIF 

2 CONTINUE 
NBC(ICG)=IP 

1 CONTINUE 

NEqNS=NCT*NBLOCK 

RETURN 
END 



www.manaraa.com

202 

*DECK BRTCC 
SUBROUTINE BRTCC 

•CALL COMMZ 
c Block row to compressed column 
c converts a block row matrix to compressed column format 

c Compute column pointer: # of 1st entry of each column 

C0LPTR(1)=1 
DO 1 ICG=1,NCT 
IP=NBC(ICG) 
DO 1 L=1,NBL0CK 
IC=IC+1 
IPP=IPP+IP*NBLOCK 
COLPTR(IC)=IPP 

1 CONTINUE 

c Compute row index: row # of each entry of each column 
c and the value of that entry 

IR=0 
DO 2 ICG=1,NCT 
IP=NBC(ICG) 
DO 2 L=1,NBL0CK 
DO 2 11=1,IP 
I=IB(ICG,II) 
J=JB(ICG,II) 
DO 2 K=1,NBL0CK 
IR=IR+1 
ROWIND(IR)=(I-1)*NBLOCK+K 
AC(IR)=A(I,J,K,L) 

2 CONTINUE 

N=0 
DO 3 1=1,NCT 
DO 3 K=1,NBL0CK 
N=N+1 
RHS(N)=B(I,K) 

3 CONTINUE 

CALL SPARSE 

||TURN 

*DECK SPARSE 
SUBROUTINE SPARSE 
COMMON/WORD/METHOD 
CHARACTER*3 METHOD 

*CALL COMMZ 
INTEGER IWORK(LIWORK), IPARAM(40) 



www.manaraa.com

203 

REAL RPARAM(30), WORK(LWORK) 

c....Let the initial guess for x be random numbers between 0 and 1 
DO 20 I = 1, NEQNS 
XR(I) = RANFO 

20 CONTINUE 

c Set default parameter values 

CALL DFAULTS ( IPARAM, RPARAM ) 

c Solve a nonsymmetric matrix IPARAM(1)=0 
c Select left preconditioning 

IPARAM(l) = 0 
IPARAM(3) = NSI 
IPARAM(7) = 0 
IPARAMO) = 1 

IPARAM(IO) = NPRET 
IPARAM(16) = KBV 
IPARAM(17) = KBV 
RPARAM(l) = l.E-2 

c Call SITRSDL to solve the problem 
ipath = 2 

CALL SITRSOL ( method, ipath, neqns, neqns, xr, rhs, colptr, 
rowind, ac, liwork, iwork, Iwork, work, 
ipareim, rparajn, ierr ) 

KC=0 
DO 35 1=1,NCT 
DO 35 K=l,4 
KC=KC+1 
XI(I,K)=XR(KC) 

35 CONTINUE 

PRINT*,'Number of Sparse solver iterations=',IPARAM(4) 

RETURN• 
END 

*DECK DAMPING 
SUBROUTINE DAMPING 

*CALL COMMZ 
IF(NDAMP.EQ.O)RETURN 
IF(NDAMP.EQ.1)CALL DAMP24 
IF(NDAMP.Eq.2)CALL DAMP4 
IF(NDAMP.EQ.3)CALL DAMP4P ggj"™ 

*DECK DAMP24 



www.manaraa.com

204 

.CALL ar™" 
DIMENSION D1F(NFPAR,4),D2F(NGPAR,4),D2P(NCPAR,2) 

C Zero out storage of 2nd difference of conserved variables and 
C storage for pressure switch 

DO 1 1=1,NCT 
D2F(I,NC0)=0.0 
D2F(I,NXM)=0.0 
D2F(I,NYM)=0.0 
D2F(I,NEN)=0.0 
D2P(I,1)=0.0 
D2P(I,2)=0.0 

1 CONTINUE 

C Compute 1st difference on each edge, and sum to get 2nd 
C difference in cell 

DO 2 1=1,NFT 
N1=NFACE(1,I) 
N2=NFACE(2,I) 
IF(N1.GT.0.AND.N2.GT.0)THEN 
U1=U(N1) 
V1=V(N1) 
P1=P(N1) 
T1=T(N1) 
U2=U(N2) 
V2=V(N2) 
P2=P(N2) 
T2=T(N2) 
ELSE 

G Solid Wall 
IF(Nl.Eq.0.0R.N2.Eq.0)THEN 
N1=N1+N2 
U1=U(N1) 
V1=V(N1) 
P1=P(N1) 
T1=T(N1) ili::?} 
P2=P1 

. T C Inlet 
IF(N1.EQ.-1.0R.N2.E.Q.-1)THEN 
N1=N1+N2+1 
N2=N1 
U1=U(N1) 
V1=V(N1) 
P1=P(N1) 
T1=T(N1) 

C Subsonic inlet 
IF(NIBC.EQ.O)THEN 
U2=2.*UI(N1)-U1 
V2=2.*VI(N1)-V1 
P2=P(N2) 
T2=2.*TI(N1)-T1 
ELSE 



www.manaraa.com

205 

C Supersonic inlet 
IF(NIBC.EQ.2)THEN 
U2=2.*UI(N1)-U1 
V2=2.*VI(N1)-V1 
P2=2.*PI(N1)-P1 
T2=2.*TI(N1)-T1 

IF(N1.EQ.-2.0R.N2.EQ.-2)THEN 
Nl=Nl+N2+2 
N2=N1 
U1=U(N1) 
V1=V(N1) 
P1=P(N1) 
T1=T(N1) 

C Subsonic exit 
IF(NEBC.Eq.l)THEN 
U2=U(N1) 
V2=V(N1) 
P2=2.*PEXIT-P1 
T2=T(N1) 
ELSE 

C Supersonic exit 
IF(NEBC.EQ.2)THEN 
U2=U(N1) 
V2=V(N1) 
P2=P(N1) 
T2=T(N1) 

ife 
C Compute conserved variables on either side of edge I 

RHOl =P1/T1 

ENl =P1*((CP-R)+.5*(U1**2+V1**2)/T1) 
RH02 =P2/T2 

RH0V2=RH02*V2 
EN2 =P2*((CP-R)+.5*(U2**2+V2**2)/T2) 

C Compute 1st difference on edge I and store in DIF for later use. 

DRHD =RH01-RH02 

D1F(I,NC0)=DRH0 
D1F(I,NXM)=DRH0U 
D1F(I,NYM)=DRH0V 
D1F(I,NEN)=DEN 

C 2nd difference in cell(used later in computing 3rd difference) 



www.manaraa.com

206 

D2F(N1,NC0)=D2F(N1,NC0) - DRHO 
D2F(N1,NXM)=D2F(N1,NXM) - DRHOU 
D2F(N1,NYM)=D2F(N1,NYM) - DRHOV 
D2F(N1,NEN)=D2F(N1,NEN) - DEN 
D2F(N2,NC0)=D2F(N2,NC0) + DRHO 
D2F(N2,NXM)=D2F(N2,NXM) + DRHOU 
D2F(N2,NYM)=D2F(N2,NYM) + DRHOV 
D2F(N2,NEN)=D2F(N2,NEN) + DEN 

C 1st difference in pressure and sum of pressure 

DP=P1-P2 
SP=P1+P2 

C 2nd difference of pressure and sum of pressure for switch in 
C each cell 

D2P(N1,1)=D2P(N1,1) - DP 
D2P(N2,1)=D2P(N2,1) + DP 
D2P(N1,2)=D2P(N1,2) + SP 
D2P(N2,2)=D2P(N2,2) + SP 

2 CONTINUE 

C Compute switch based on pressure 

DO 3 1=1,NCT 
D2P(I,1)=ABS(D2P(I,1))/D2P(I,2) 

3 CONTINUE 

C Compute 1st and third difference on edges, and sum to get 2nd 
C and 4th 

DO 4 1=1,NFT 
N1=NFACE(1,I) 
N2=NFACE(2,I) 

C Compute coefficients for dissipation 

IF(N1.GT.0.AND.N2.GT.0)THEN 
VDT=V0L(N1)/DT(N1) + V0L(N2)/DT(N2) 
D2P1=D2P(N1,1) 
D2P2=D2P(N2,1) 
VIS1=VDT*E1*AMAX1(D2P1,D2P2) 
VIS3=VDT*E3 
VIS3=DIM(VIS3,VIS1) 

D2F1C0=D2F(N1,NC0) 
D2F1XM=D2F(N1,NXM) 
D2F1YM=D2F(N1,NYM) 
D2F1EN=D2F(N1,NEN) 
D2F2C0=D2F(N2,NC0) 
D2F2XM=D2F(N2,NXM) 
D2F2YM=D2F(N2,NYM) 
D2F2EN=D2F(N2,NEN) 
ELSE 
IF(N1.EQ.0.0R.N2.EQ.0)THEN 
N1=N1+N2 
N2=0 
VDT=V0L(N1)/DT(N1) + V0L(N1)/DT(N1) 



www.manaraa.com

207 

D2P1=D2P(N1,1) 
D2P2=D2P(N1,1) 
VIS1=VDT*E1*AMAX1(D2P1,D2P2) 
VIS3=VDT*E3 
VIS3=DIM(VIS3,VIS1) 
D2F1C0=D2F(N1,NC0) 
D2F1XM=D2F(N1,NXM) 
D2F1YM=D2F(N1,NYM) 
D2F1EN=D2F(N1,NEN) 
D2F2C0=D2F(N1,NC0) 
D2F2XM=D2F(N1,NXM) 
D2F2YM=D2F(N1,NYM) 
D2F2EN=D2F(N1,NEN) 

ELSE 
IF(N1.EQ.-1.0R.N2.EQ.-1)THEN 
N1=N1+N2+1 
N2=-l 
VDT=V0L(N1)/DT(N1) + V0L(N1)/DT(N1) 
D2P1=D2P(N1,1) 
D2P2=D2P(N1,1) 
VIS1=VDT*E1*AMAX1(D2P1,D2P2) 
VIS3=VDT*E3 
VIS3=DIM(VIS3,VIS1) 

D2F1C0=D2F(N1,NC0) 
D2F1XM=D2F(N1,NXM) 
D2F1YM=D2F(N1,NYM) 
D2F1EN=D2F(N1,NEN) 
D2F2C0=D2F(N1,NC0) 
D2F2XM=D2F(N1,NXM) 
D2F2YM=D2F(N1,NYM) 
D2F2EN=D2F(N1,NEN) 

ELSE 
IF(N1.EQ.-2.0R.N2.EQ.-2)THEN 
Nl=Nl+N2+2 
N2=-2 
VDT=V0L(N1)/DT(M1) + V0L(N1)/DT(N1) 
D2P1=D2P(N1,1) 
D2P2=D2P(N1,1) 
VIS1=VDT*E1*AMAX1(D2P1,D2P2) 
VIS3=VDT*E3 
VIS3=DIM(VIS3,VIS1) 

D2F1C0=D2F(N1,NCD) 
D2F1XM=D2F(N1,NXM) 
D2F1YM=D2F(N1,NYM) 
D2F1EN=D2F(N1,NEN) 
D2F2C0=D2F(N1,NC0) 
D2F2XM=D2F(N1,NXM) 
D2F2YM=D2F(N1,NYM) 
D2F2EN=D2F(N1,NEN) 

ENDIF 

iSi 
C 1st difference on edge I known, and 3rd difference on edge 
C I is computed 



www.manaraa.com

208 

D13RH0 =VIS1*D1F(I,NC0) 
-VIS3*(D2F1C0-D2F2C0) 

D13RH0U=VIS1*D1F(I,NXM) 
-Visa*(D2F1XM-D2F2XM) 

D13RH0V=VIS1*D1F(I,NYM) 
-VIS3*(D2F1YM-D2F2YM) 

D13EN =VIS1*D1F(I,NEN) 
-VIS3*(D2F1EN-D2F2EN) 

C Sum 1st and 3rd to get 2nd and 4th in each cell 

B(N1,NC0)=B(N1,NC0) - D13RH0 
B(N1,NXM)=B(N1.NXM) - D13RH0U 
B(N1,NYM)=B(N1,NYM) - D13RH0V 
B(N1,NEN)=B(N1,NEN) - D13EN 

B(N2,NC0)=B(N2,NC0) + D13RH0 
B(N2,NXM)=B(N2,NXM) + D13RH0U 
B(N2,NYM)=B(N2,NYM) + D13RH0V 
B(N2,NEN)=B(N2,NEN) + D13EM 

4 CONTINUE 

RETURN 
END 

*DECK DAMP4 

.CALL 
DIMENSION D1F(NFPAR,4),D2F(NCPAR.4) 

omega=e3/16. 

C Zero out storage of 2nd difference of conserved variables 

DO 1 1=1,NCT 
D2F(I,NC0)=0.0 
D2F(I,NXM)=0.0 
D2F(I,NYM)=0.0 
D2F(I,NEN)=0.0 

1 CONTINUE 

C Compute 1st difference on each edge, and sum to get 2nd 
C difference in cell 

DO 2 1=1,NFT 
N1=NFACE(1,I) 
N2=NFACE(2,I) 
IF(N1.GT.0.AND.N2.GT.0)THEN 
U1=U(N1) 
V1=V(N1) 
P1=P(N1) 



www.manaraa.com

209 

T1=T(N1) 
U2=U(N2) 
V2=V(N2) 
P2=P(N2) 
T2=T(N2) 
ELSE 

Solid Wall 
IF(N1.EQ.0.0R.N2.EQ.0)THEN 
N1=N1+N2 
U1=U(N1) 
V1=V(N1) 
P1=P(N1) 
T1=T(N1) 

ELSE^^ 
Inlet 
IF(N1.EQ.-1.0R.N2.EQ.-1)THEN 
N1=N1+N2+1 
N2=N1 
U1=U(N1) 
V1=V(N1) 
P1=P(N1) 
T1=T(N1) 
Subsonic inlet 
IF(NIBC.EQ.O)THEN 
U2=2.*UI(N1)-U1 
V2=2.*VI(N1)-V1 
P2=P(N2) 
T2=2.*TI(Nl)-Tl 

^ELSE 
Supersonic inlet 
IF(NIBC.Eq.2)THEN 
U2=2.*UI(N1)-U1 
V2=2.*VI(N1)-V1 
P2=2.*PI(N1)-P1 
T2=2.*TI(N1)-T1 

JP 
Exit 
IF(N1.EQ.-2.OR.N2.EQ.-2)THEN 
|y»l.N2.2 

ui=u?Ni; 
Vl=V(Nl! 
P1=P(N1) 
T1=T(N1) 
Subsonic exit 
IF(NEBC.EQ.1)THEN 
U2=U(N1) 
V2=V(N1) 
P2=2.*PEXIT-Pi 
T2=T(N1) 
ELSE 

Supersonic exit 
IF(NEBC.Eq.2)THEN 



www.manaraa.com

210 

U2=U(N1) 
V2=V(N1) 
P2=P(N1) 
T2=T(N1) 

i 
Compute conserved variables on either side of edge I 

RHOl =P1/T1 i8?J:i81î!îî 
ENl =P1*((CP-R) +.5*(U1**2+V1**2) /Tl) 
RH02 =P2/T2 

RH0V2=RH02*V2 
EN2 =P2*((CP-R)+.5*(U2**2+V2**2)/T2) 

Compute 1st difference on edge I and store in DIF for later use. 

Mlilfe 
DEN =EN1-EN2 

D1F(I,NC0)=DRH0 
D1F(I,NXM)=DRH0U 
D1F(I,NYM)=DRH0V 
D1F(I,NEN)=DEN 

2nd difference in cell(used later in computing 3rd difference) 

D2F(N1,NCO)=D2F(N1,NCO) 
D2F(N1,NXM)=D2F(N1,NXM) 
D2F(N1,NYM)=D2F(N1,NYM) 
D2F(N1,NEN)=D2F(N1,NEN) 
D2F(N2,NCO)=D2F(N2,NCO) 
D2F(N2,NXM)=D2F(N2,NXM) 
D2F(N2,NYM)=D2F(N2,NYM) 
D2F(N2,NEN)=D2F(N2,NEN) 

DRHQ 
DRHOU 
DRHOV 
DEN 
DRHO 
DRHOU 
DRHOV 
DEN 

2 CONTINUE 

Compute third difference on edges, and sum to get 4th 

DO 4 1=1,NFT 
N1=NFACE(1,I) 
N2=NFACE(2,I) 

IF(N1.GT.0.AND.N2.GT.0)THEN 
D2F1C0=D2F(N1,NC0) 
D2F1XM=D2F(N1,NXM) 
D2F1YM=D2F(N1,NYM) 
D2F1EN=D2F(N1,NEN) 
D2F2C0=D2F(N2,NC0) 
D2F2XM=D2F(N2,NXM) 



www.manaraa.com

211 

D2F2YM=D2F(N2,NYM) 
D2F2EN=D2F(N2,NEN) 
ELSE 
IF(Nl.Eq. 0.0R.N2.EQ. 0)THEN 
N1=N1+N2 
N2=0 
D2F1CQ=D2F(N1,NCQ) 
D2F1XM=D2F(N1,NXM) 
D2F1YM=D2F(N1,NYM) 
D2F1EN=D2F(N1,NEN) 
D2F2C0=D2F(N1,NCD) 
D2F2XM=D2F(N1,NXM) 
D2F2YM=D2F(N1,NYM) 
D2F2EN=D2F(N1,NEN) 
ELSE 
IF(N1.EQ.-1.•R.N2.EQ.-1)THEN 
N1=N1+N2+1 
N2=-l 
D2FlC0=D2F(Nl,NCa) 
D2F1XM=D2F(N1,NXM) 
D2F1YM=D2F(N1,NYM) 
D2F1EN=D2F(N1,NEN) 
D2F2C0=D2F(N1,NC0) 
D2F2XM=D2F(N1,NXM) 
D2F2YM=D2F(N1,NYM) 
D2F2EN=D2F(N1,NEN) 
ELSE 
IF(N1.EQ.-2.OR.N2.EQ.-2)THEN 
Nl=Nl+N2+2 
N2=-2 
D2F1C0=D2F(N1,NC0) 
D2F1XM=D2F(N1,NXM) 
D2F1YM=D2F(N1,NYM) 
D2F1EN=D2F(N1,NEN) 
D2F2C0=D2F(N1,NC0) 
D2F2XM=D2F(N1,NXM) 
D2F2YM=D2F(N1,NYM) 
D2F2EN=D2F(N1,NEN) 

11 
C 3rd difference on edge I is computed 

D13RH0 =-(D2FlC0-D2F2C0) 

D13RH0U=-(D2F1XM-D2F2XM) 

D13RH0V=-(D2F1YM-D2F2YM) 

D13EN =-(D2FlEN-D2F2EN) 

C Sum 3rd to get 4th in each cell 

B(N1,NC0)=B(N1,NC0) - omega*D13RH0 
B(N1,NXM)=B(N1,NXM) - omega*D13RH0U 



www.manaraa.com

212 

B(N1,NYM)=B(N1,NYM) - omega*D13RH0V 
B(N1,NEN)=B(N1,NEN) - omega*D13EN 

B(N2,NC0)=B(N2,NC0) + omega*D13RH0 
B(N2,NXM)=B(N2,NXM) + omega*D13RH0U 
B(N2,NYM)=B(N2,NYM) + omega*D13RH0V 
B(N2,NEN)=B(N2.NEN) + omega*D13EN 

4 CONTINUE 

RETURN 
END 

*DECK DAMP4P 

.CALL mr™" 
DIMENSION D1F(NFPAR,4),D2F(NCPAR,4),D4F(NCPAR,4) 

C Zero out storage of 2nd difference of conserved variables 

DO 1 1=1,NCT 
D2F(I,1)=0.0 
D2F(I,2)=0.0 
D2F(I,3)=0.0 
D2F(I,4)=0.0 
D4F(I,1)=0.0 
D4F(I,2)=0.0 
D4F(I,3)=0.0 
D4F(I,4)=0.0 

1 CONTINUE 

C Compute 1st difference on each edge, and sum to get 2nd 
C difference in cell 

DO 2 1=1,NFT 
N1=NFACE(1,I) 
N2=NFACE(2,I) 
IF(N1.GT.0.AND.N2.GT.0)THEN 
U1=U(N1) 
V1=V(N1) 
P1=P(N1) 
T1=T(N1) 
U2=U(N2) 
V2=V(N2) 
P2=P(N2) 
T2=T(N2) 
ELSE 

C Solid Wall 
IF(N1.EQ.0.0R.N2.EQ.0)THEN 
N1=N1+N2 
U1=U(N1) 
V1=V(N1) 
P1=P(N1) 
T1=T(N1) 
U2=-U1 



www.manaraa.com

213 

IF(N1.EQ. - 1 .  OR.N2.Eq.-DTHEN 
N1=N1+N2+1 
N2=N1 
U1=U(N1) 
V1=V(N1) 
P1=P(N1) 
T1=T(N1) 
Subsonic inlet 
IF(NIBC.EQ.O)THEN 
U2=2.*UI(N1)-U1 
V2=2.*VI(N1)-V1 
P2=P(N2) 
T2=2.*TI(N1)-T1 

cELSE . 
Supersonic inlet 
IF(NIBC.EQ.2)THEN 
U2=2.*UI(N1)-U1 
V2=2.*VI(N1)-V1 
P2=2.*PI(N1)-P1 
T2=2.*TI(N1)-T1 

, JP 
Exit 
IF(N1.EQ.-2.0R.N2.EQ.-2)THEN 
Nl=Nl+N2+2 
N2=N1 
U1=U(N1) 
V1=V(N1) 
P1=P(N1) 
T1=T(N1) 
Subsonic exit 
IF(NEBC.Eq. DTHEN 
U2=U(N1) 
V2=V(ND 
P2=2.*PEXIT-P1 
T2=T(N1) 
ELSE 

Supersonic exit 
IF(NEBC.EQ.2)THEN 
U2=U(N1) 
V2=V(ND 
P2=P(N1) 
T2=T(N1) 

i 
C Compute 1st difference on edge I and store in DIF for later use. 

i as 



www.manaraa.com

214 

DIT =T1-T2 

D1F(I,1)=D1P 
D1F(I,2)=D1U 
D1F(I,3)=D1V 
D1F(I,4)=D1T 

C 2nd difference in cell(iised later in computing 3rd difference) 

D2F(N1,1)=D2F(N1,1) - DIP 
D2F(N1,2)=D2F(N1,2) - DIU 
D2F(N1,3)=D2F(N1,3) - DIV 
D2F(N1,4)=D2F(N1,4) - DIT 
D2F(N2,1)=D2F(N2,1) + DIP 
D2F(N2,2)=D2F(N2,2) + DIU 
D2F(N2,3)=D2F(N2,3) + DIV 
D2F(N2,4)=D2F(N2,4) + DIT 

2 CONTINUE 

C Compute third difference on edges, and sum to get 4th 

DO 4 1=1,NFT 
N1=NFACE(1,I) 
N2=NFACE(2,I) 

IF(N1.GT.0.AND.N2.GT.0)THEN 
D2F1P=D2F(N1.1) 
D2F1U=D2F(N1,2) 
D2FiV=D2F(Nl,3) 
D2F1T=D2F(N1,4) 
D2F2P=D2F(N2,1) 
D2F2U=D2F(N2,2) 
D2F2V=D2F(N2,3) 
D2F2T=D2F(N2,4) 
ELSE 
IF(Nl.EQ.0.0R.N2.Eq.0)THEN 
N1=N1+N2 
N2=0 
D2F1P=D2F(N1,1) 
D2F1U=D2F(N1,2) 
D2F1V=D2F(N1,3) 
D2F1T=D2F(N1,4) 
D2F2P=D2F(N1,1) 
D2F2U=-D2F(N1,2) 
D2F2V=-D2F(N1,3) 
D2F2T=D2F(N1,4) 
ELSE 
IF(N1.EQ.-1.0R.N2.EQ.-1)THEN 
N1=N1+N2+1 
N2=-l 
D2F1P=D2F(N1,1) 
D2F1U=D2F(N1,2) 
D2F1V=D2F(N1,3) 
D2F1T=D2F(N1,4) 



www.manaraa.com

215 

D2F2P=D2F(N1,1) 
D2F2U=D2F(N1,2) 
D2F2V=D2F(N1,3) 
D2F2T=D2F(N1,4) 
ELSE 
IF(Nl.Eq.-2.0R.N2.EQ.-2)THEN 
Nl=Nl+N2+2 
N2=-2 
D2F1P=D2F(N1,1) 
D2F1U=D2F(N1,2) 
D2F1V=D2F(N1,3) 
D2F1T=D2F(N1,4) 
D2F2P=D2F(N1,1) 
D2F2U=D2F(N1,2) 
D2F2V=D2F(N1,3) 
D2F2T=D2F(N1,4) 

iîl 
ENDIF 

C 3rd difference on edge I is computed 

D13P =D2F1P-D2F2P 

D13U =D2F1U-D2F2U 

D13V =D2F1V-D2F2V 

D13T =D2F1T-D2F2T 

C Sum 3rd to get 4th in each cell 

D4F(N1,1)=D4F(N1,1) - D13P 
D4F(N1,2)=D4F(N1,2) - D13U 
D4F(N1,3)=D4F(N1,3) - D13V 
D4F(N1,4)=D4F(N1,4) - D13T 

D4F(N2,1)=D4F(N2,1) + D13P 
D4F(N2,2)=D4F(N2,2) + D13U 
D4F(N2,3)=D4F(N2,3) + D13V 
D4F(N2,4)=D4F(N2,4) + D13T 

4 CONTINUE 

C Compute smoothing coefficient and add to cell 

DO 5 1=1,NCT 
S=VOL(I) 
DTAU=CFL*AMIN1(DT(I).DTMIN) 
omega=e3/DTAU*S/T(I)/16. 

C Include 4th dissipation in each cell 

B(I,NCO)=B(I,NCO) - omega*(R*D4F(1,1) 
-P(I)/T(I)*D4F(I,4)) 

B(I,NXM)=B(I,NXM) - omega*(R*U(I)*D4F(I,1) 
+P(I)*D4F(I,2) 

-P(I)*U(I)/T(I)*D4F(I,4)) 



www.manaraa.com

216 

B(I,NYM)=B(I,HYM) - omega*(R*V(I)*D4F(I,1) 
+P(I)*D4F(I,3) 

-P(I)*V(I)/T(I)*D4F(I.4)) 

B(I,NEN)=B(I,NEN) -
. omega*(R*((CP-R)*T(I)+.5*(U(I)**2+V(I)**2))*D4F(1,1) 

+P(I)*U(I)*D4F(I,2) 
+P(I)*V(I)*D4F(I,3) 

-.5*P(I)/T(I)*(U(I)**2+V(I)**2)*D4F(I,4)) 

5 CONTINUE 

*DECK OUTPUT 
SUBROUTINE OUTPUT 

*CALL COMMZ 
WRITE(15,100) 
DO 1 1=1,NCT 
WRITE(15,110)1,U(I),V(I),P(I),T(I) 

1 CONTINUE 
100 F0RMAT(///,2X,'Solution Vector',//,3X,'Cell',6X, 

. 'U(I)',8X,'V(I)',8X,'P(I)',8X,'T(I)') 
110 F0RMAT(I6,4F12.5) 

*DECK PLOUTl 
SUBROUTINE PLOUTl 

C Print dimensional output for SGI based graphic plotting 

SCALL SgBSâ**: 
WRITE(30,*)NCT 
WRITE(30,*)G,RO 
DO 1 1=1,NCT 
N1=NCELL(4,I) 
N2=NCELL(5,I) 
N3=NCELL(6,I) 
UOUT=U(I)*UO 
VOUT=V(I)*UO 
P0UT=P(I)*RH00*U0**2 
TOUT=T(I)*TO 
EU=ABS(XI(I,1)) 
EV=ABS(XI(I,2)) 
EP=ABS(XI(I,3)) 
ET=ABS(XI(I,4)) 
WRITE(30,*)X(N1),Y(N1),X(N2),Y(N2),X(N3),Y(N3) 
WRITE(30,*)UOUT,VOUT,POUT,TOUT,(RESXI(I,K),K=1,4) 

c WRITE(30,*)UOUT,VOUT,POUT,TOUT,EU,EV,EP,ET 



www.manaraa.com

217 

' mar 
END 

•DECK PL0UT2 

*CALL 
C Print output for Grafic plotting routines 

DIMENSION DAT(6,NNPAR),NDAT(NNPAR) 
DO 2 N=1,NCT 
PRES=P(N)*RH00*U0**2 
UVEL=U(N)*UO 
VVEL=V(N)*UO 
TEMP=T(N)*TD 
RHO=PRES/RQ/TEMP 

ET=PRES/RHO/(G-1.)+.5*(UVEL**2+VVEL**2) 

IN=NCELL(NN,N) 
DAT(3,IN)=DAT(3,IN)+RH0 
DAT(4,IN)=DAT(4,IN)+RHOU 
DAT(5,IN)=DAT(5,IN)+RHOV 
DAT(6,IN)=DAT(6,IN)+ET 
NDAT(IN)=NDAT(IN)+1 

_ 2 CONTINUE 
C Fix node point values on boundary for viscous solution 
C Reset A and B nodes to 0.0 

DO 3 N=1,NCT 
N1=NCELL(4,N) 
N2=NCELL(5,N) 
NCF=NCELL(1,N) 
NCC=NFACE(1,NCF)+NFACE(2,NCF)-N 
IF(NCC.Eq.O)THEN 
DAT(4,N1)=0.0 
DAT(5,N1)=0.0 
DAT(4,N2)=0.0 
DAT(5,N2)=0.0 

ENDIF 
3 CONTINUE 

DO 5 N=1,NNT 
DAT(1,N)=X(N) 
DAT(2,N)=Y(N) 
DAT(3,N)=DAT(3,N)/NDAT(N) 
DAT(4,N)=DAT(4,N)/NDAT(N) 
DAT(5,N)=DAT(5,N)/NDAT(N) 
DAT(6,N)=DAT(6,N)/NDAT(N) 

5 CONTINUE 
WRITE(1,"(A22)")"unstructured grid data" 
WRITE(1,*)NCT seTfifrScT 



www.manaraa.com

218 

I1=NCELL(4,I) 
I2=NCELL(5,I) 
I3=NCELL(6,I) 
WRITE(1,*)NCORNERS,11,12,13 

6 CONTINUE 
WRITE(1,*)NNT 

IPjihS 
WRITE(1,*)RINF,RUINF,RVINF,ETINF 
DO 7 1=1,NNT 
WRITEC1,*)(DAT(J,I),J=1,6) 

' lii. 
WRITE(1,*)NEDDIES 
NB0D=0 
NB0D=49 
WRITE(1,*)NB0D 
DO 8 1=101,148 
IP=I+1 
WRITE(1,*)I,IP 

8 CONTINUE 

IP=251 
WRITE(1,*)I,IP 
NB0D=49 
WRITE(1,*)NB0D 
DO 9 1=300,347 
IP=I+1 
WRITE(1,*)I,IP 

9,CONTINUE 

IP=101 
WRITE(1,*)I,IP 
NB0UNDA=100 
WRITE(1,*)NB0UNDA 
DO 10 I=1,NB0UNDA-1 
IP=I+1 
WRITE(1,*)I,IP 

îilSiffiA 
IP=1 
WRITE(1,*)I,IP 

Compute Solid Wall pressure for plotxv 
DO 11 1=101,125 
NL=I 
RH0=DAT(3,NL) 
UVEL=DAT(4,NL)/RH0 
VVEL=DAT(5,NL)/RH0 
ET=DAT(6,NL) 
PRES=(G-1.)*(ET-.5*RH0*(UVEL**2+VVEL**2)) 
WRITE(40,*)X(NL),PRES 

END 



www.manaraa.com

219 

*DECK REREAD 

*CALL ggr 
READ(35)DTMIN,CP,R,PEXIT,NCOUNT 
READ(35)P0I,SC1,SC2,TW 
DO 1 I=1,NILT 
N=NCELLIL(I) 
READ(35)UI(N),VI(N),PI(N),TI(N) 

READ(35)U(I),V(I),P(I),T(I),DT(I),VOL(I) 
2 CONTINUE 

C Residual information 
READ(35)NRES 
DO 3 I=1,NRES 
READ(60,*)RES5(1,I),RES5(2,I) 

„ 3 CONTINUE 
C Initialize A matrix and b vector 

DO 4 J=0,10 
DO 4 1=0,NCT 
A(I,J,1,1)=0.0 
A(I,J,1,2)=0.0 
A(I,J,1,3)=0.0 
A(I,J,1,4)=0.0 
A(I,J,2,1)=0.0 
A(I,J,2,2)=0.0 
A(I,J,2,3)=0.0 
A(I,J,2,4)=0.0 
A(I,J,3,1)=0.0 
A(I ,J ,3 ,2)=0.0  
A(I,J,3,3)=0.0 
A(I,J,3,4)=0.0 
A(I,J,4,1)=0.0 
A(I,J,4,2)=0.0 
A(I,J,4,3)=0.0 
A(I,J,4,4)=0.0 

B(I,1)=0.0 
B(I,2)=0.0 
B(I,3)=0.0 
B(I,4)=0.0 
UP(I)=U(I) 
VP(I)=V(I) 
PP(I)=P(I)  
TP(I)=T(I) ' Kg W 
END 

•DECK REWRITE 



www.manaraa.com

220 

,^ SUBROUTINE REWRITE 
*CALL COMMZ 

REWIND(35) 
REWIND(60) 
WRITE(35)DTMIN,CP,R,PEXIT,NCOUNT 
WRITE(35)P0I,SC1,SC2,TW 
DO 1 1=1,NILT 
N=NCELLIL(I) 
WRITE(35)UI(N),VI(N),PI(N),TI(N) 

' gBT?H?.NCT 
WRITE(35)U(I),V(I),P(I),T(I),DT(I),VOL(I) 

2 CONTINUE 
C Residual information 

WRITE(35)NRES 
DO 3 1=1,NRES 
WRITE(60,*)RES5(1,I),RES5(2,I) ^ RgRP 

END 

•DECK energy 
SUBROUTINE energy 

*CALL COMMZ 
C Added to compute isothermal flow, 

do 1 1=1,4 
do 1 j=l,ncpl 
do 1 i=l,nct 
a(I,J,NEN,L)=0.0 
a(I,J,L,NEN)=0.0 

1 continue 

do 2 i=l,nct 
b(I,NEN)=0.0 

2 continue 

do 3 i=l,nct 
a(I,l,NEN,NEN)=1.0 

3 continue 

*COMDECK COMMZ 
PARAMETER(NCPAR=10000,NFPAR=15000,NNPAR=6000, 
. NBL0CK=4,NCPL=10,LIWORK=NCPAR*200,LWORK=LIWORK) 
COMMON/VAR/NTTS,NLIN,CFL,NDTT,NIBC,NEBC,CPO,RO,XMUO,PR, 
. PO,TO,PSRAT,UT,UTANG,TW,CP,CV,G,R,XMU,XLREF,RHOO, 
. UO,RENO,NROWB,NFT,NCT,NNT,NILT,NSI,KBV, 
. PEXIT,NSOLVE,RSq,DELT,DTMIN, 
. NRST,NCOUNT,NDAMP,El,E3,POI,SC1,SC2,NXM,NYM,MEN,NCO. 
. NPRET,IGRID,NRES,PSEUDO,DTAU 
COMMON/ARRAY/X(NNPAR),Y(NNPAR),NCELL(6,NCPAR),NFACE(2,NFPAR), 



www.manaraa.com

221 

. U(NCPAR),V(NCPAR),P(NCPAR),T(NCPAR),UP(NCPAR),VP(NCPAR), 

. PP(NCPAR),TP(NCPAR),A(0:NCPAR,0:10,4,4),B(0:NCPAR,4), 

. NUMEL(NCPAR,10),NCELLIL(NCPAR),NRGBY(4),NC0L0R(4,NCPAR), 

. DT(NCPAR),VOL(NCPAR),XI(NCPAR,4), 

. RESXI(NCPAR,4),RES5(2,10000),NPERM(3,3),ICS(3), 

. UI(NCPAR),VI(NCPAR),PI(NCPAR),TI(NCPAR) 
CGMMON/SMS/IC,IR,NEqNS,IB(NCPAR,NCPL),JB(NCPAR,NCPL), 
. NBC(NCPAR),ROWIND(NCPAR*NCPL*4*4),COLPTR(NCPAR*NCPL+1), 
. AC(NCPAR*NCPL*4*4),RHS(NCPAR*4),XR(NCPAR*4) 
INTEGER ROWIND,COLPTR 


	1992
	An implicit numerical scheme for the simulation of internal viscous flows on unstructured grids
	Philip Charles Eberhardt Jorgenson
	Recommended Citation


	tmp.1416722789.pdf.RHoC1

